
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2012

Lenalidomide targets the T-cell co-stimulatory
pathway to mediate immune modulation
Jessica Marie Mcdaniel
University of South Florida, jessica.mcdaniel4@gmail.com

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the Cell Biology Commons, Immunology and Infectious Disease Commons, and the
Oncology Commons

This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in
Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
scholarcommons@usf.edu.

Scholar Commons Citation
Mcdaniel, Jessica Marie, "Lenalidomide targets the T-cell co-stimulatory pathway to mediate immune modulation" (2012). Graduate
Theses and Dissertations.
http://scholarcommons.usf.edu/etd/4367

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=scholarcommons.usf.edu%2Fetd%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/33?utm_source=scholarcommons.usf.edu%2Fetd%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/694?utm_source=scholarcommons.usf.edu%2Fetd%2F4367&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu


www.manaraa.com

 

 
 
 
 

Lenalidomide targets the T-cell co-stimulatory pathway to mediate immune 

 modulation 
 
 
 
 

by: 
 
 
 

Jessica Marie McDaniel 
 
 
 
 
 

A dissertation submitted in partial fulfillment  
of the requirements for the degree of 

Doctor of Philosophy 
Department of Cell Biology, Microbiology, and Molecular Biology 

College of Arts and Sciences 
University of South Florida 

 
 
 

Major Professor: PK Epling-Burnette, PharmD., Ph.D. 
Committee: Julie Y. Djeu, Ph.D. 

Sheng Wei, M.D. 
Javier Pinilla-Ibarz, M.D., Ph.D. 

Xue-Zhong Yu, M.D. 
 
 

Date of Approval: 
August 24, 2012 

 
 
 

Keywords: CD28, myelodysplastic syndrome, IMiDs, PP2A, anti-tumor immunity 
 

Copyright ©2012, Jessica M. McDaniel 



www.manaraa.com

 

 
 

 

DEDICATION 

I dedicate this dissertation to… 

…my husband, Chad, who has been my rock and my support, and who 

never stopped believing in me, even when I doubted myself. Four years ago, it 

was my acceptance to USF that brought us 1,000 miles away from our families 

and friends, and you never once complained. You’ve always had faith in my 

abilities; you have been there to wipe away the tears and encourage me when 

things got tough, and to smile and laugh with me in celebration of my successes. 

Truly, I would not be where I am today if it weren’t for you in my life. I love you. 

…my parents, Scott and Cindy, and my brother Benjamin. You have been 

my biggest cheerleaders throughout my entire life, and always told me I could 

achieve anything I put my mind to. Mom and dad, you were the first ones to 

introduce me to science, and it is because of your hard work and support that I 

have been afforded the opportunities to get where I am today. Thank you for 

listening to me vent about failed experiments on my way home from late nights in 

the lab and encouraging me not to quit. Ben, I could always count on you to 

make me laugh after a crappy day and to encourage me to “keep on, keeping 

on.” I love you all. 

…my father-in-law Chris, and my sister-in-laws Erica and Gwen. You all 

have become my family, and your support means the world to me. From 

television shows to family vacations, we have many experiences that I cherish 



www.manaraa.com

 

and have kept me sane throughout school, and I’m looking forward to all that lay 

ahead. I’m thankful that “we’re sisters…do do do doo”.   

…my friends. Near and far, from Florida to France to Chicago and 

everywhere in between, you have encouraged me in my educational ventures 

and enrich my life. I guess I’ll always be “the nerdy one”, and even though you 

never really understood “what it is I actually do”, you never hesitate to let me 

know how proud you are of me and to reassure me I could do this. Thank you 

from the bottom of my heart. 



www.manaraa.com

 

 
 

 

ACKNOWLEDGEMENTS 

 I would first and foremost like to thank my mentor, Dr. PK Epling-Burnette, 

for all of her encouragement, support, and teaching over these past four years. 

Your guidance has allowed me to become the scientist and independent-thinker 

that I am today. The supportive learning environment and inviting/collegial 

atmosphere of your lab made it feel like “home” from day one, and I couldn’t have 

asked for anything better. Special thanks to the Burnette lab members Adam 

Mailloux, Jeff Painter, Eric Padron, and Lili Yang for all of your support and help. 

Also to past lab members Fanqi, Zou, Mayenha, and Amber I could not have 

done this if it weren’t for all your expertise and insight into protocols and 

experimental design. I feel lucky to have had such wonderful labmates/friends to 

work with on a daily basis, and I truly will miss all of your playful banter. 

 I would also like to thank my committee members, Dr. Djeu, Dr. Wei, Dr. 

Pinilla, and Dr. Yu. Thank you so much for your insight, time, support, and 

camaraderie. You have all been instrumental to my graduate experience and I 

thank you for everything. I feel especially honored to have Dr. Neal Young, the 

head of the hematology branch at the National Heart Lung and Blood Institute 

(NHLBI), serve as the outside chairperson of my dissertation committee.  

 I cannot forget to thank all the members of the Sotomayor, Pinilla, and 

Villagra labs (Winston, Jason, John, Eva, Jennifer, Allejandro, etc.) for sharing 

reagents, cell lines, ideas, and jokes. Lab meetings and conferences were 



www.manaraa.com

 

definitely more fun with us all together, and your input on my experiments was 

invaluable.  

 A special thanks to my undergraduate student in the lab, Danielle Grams, 

for all your help with my experiments and for sharing in my frustrations on PP2A. 

Thank you for giving me the opportunity to share my love of science with you, 

and to teach you the ways of the lab. I could not be luckier to have worked with 

such a bright, motivated, kind, and hard-working young woman, and am so proud 

of how far you have come since your freshman year. I cannot wait to hear about 

all you will accomplish in your life. 

 Last, but certainly not least, I must thank my best friend and classmate, 

Melissa Buckley. Whether it was training for and running marathons or venting 

about frustrating experiments, you were always someone I could lean on for 

guidance, knowledge, and support. I know for certain I never would have finished 

even one marathon, or maybe even made it this far in graduate school, without 

your understanding of my failures and encouragement to keep going. I’m truly 

blessed and thankful to have had such a wonderful person to get to know and 

share this experience with. 



www.manaraa.com

i 

 
 
 
 
 

TABLE OF CONTENTS 
 
List of Tables  ........................................................................................................ iv 
 
List of Figures ....................................................................................................... v 
 
Abstract  ....................................................................................................... vii 
 
Chapter 1: Background ......................................................................................... 1 
 T-cells  ........................................................................................................ 1 
  T-cell development .......................................................................... 1 
  T-helper and cytotoxic T-cells ......................................................... 2 
  Memory T-cells ................................................................................ 5 
  Aging in the immune system ........................................................... 7 
  T-cell activation ............................................................................. 11 
   Co-stimulatory receptors .................................................... 12 
   Co-inhibitory receptors ....................................................... 12 
 CD28   ........................................................................................... 15 
  CD28 structure .............................................................................. 15 
  CD28 signaling cascade ............................................................... 16 
  CD28 is necessary for interleukin-2 production ............................. 18 
  Negative regulation of CD28 signaling .......................................... 20 
   Cbl-b ................................................................................... 20 
   PP2A .................................................................................. 21 
 Tumor Immunology .................................................................................. 23 
  Tumor immune surveillance (elimination) ...................................... 23 
  Tumor immune equilibrium ............................................................ 24 
  Tumor immune escape ................................................................. 25 
   Mechanisms of escape ....................................................... 25 
   Immunotherapeutics ........................................................... 27 
 Lenalidomide and the immunomodulatory drugs (IMiDs®) ...................... 28 
  Thalidomide and the generation of IMiDs® ................................... 28 
  Lenalidomide in Myelodysplastic Syndrome ................................. 31 
   Effect on hematopoiesis ..................................................... 31 
    RPS14 and MDM2 ................................................... 32 
    PP2cα and CDC25c ................................................ 33 
    Cereblon .................................................................. 34 
   Immune-modulating effects ................................................ 35 
  Immunomodulatory capacity of lenalidomide in other 

hematologic malignancies .......................................................... 37 
    Enhanced T-cell co-stimulation and signaling .................... 37 



www.manaraa.com

ii 

    Effects on Tregs ................................................................. 39 
   Increased Natural Killer cell recognition and 

cytotoxicity of leukemia cells .......................................... 40 
   Enhanced NK-cell ADCC by lenalidomide with 

combination antibody therapy ......................................... 43 
 
 
Chapter 2: Reversal of T-cell tolerance in myelodysplastic syndrome 

through lenalidomide immune modulation ..................................................... 46 
  Introduction .............................................................................................. 46 
  Results ..................................................................................................... 48 
   Characteristics and hematologic response of lenalidomide-

treated MDS cohort .................................................................... 48 
   MDS patient T-cells were inherently tolerant to in vitro 

stimulation .................................................................................. 49 
   Lenalidomide recovers T-cell proliferation and augments Th1 

cytokine production in vitro ......................................................... 51 
   Improved homeostatic regulation after lenalidomide 

treatment in vivo ......................................................................... 54 
   Reversal of functional defects in lenalidomide-responsive 

patients in vivo ............................................................................ 56 
   Improved T-cell homeostasis is associated with functional 

improvement in lenalidomide-responsive patients ...................... 59 
   The mechanism for increased naïve T-cell distribution after 

lenalidomide treatment differs in CD4+ and CD8+ T-cells .......... 61 
  Discussion ............................................................................................... 62 
  Materials and Methods ............................................................................. 66 
   Patients and healthy controls ........................................................ 66 
   T-cell activation ............................................................................. 67 
   Proliferation ................................................................................... 67 
   Intracellular cytokine staining ........................................................ 68 
   Detection of naïve and memory T-cell populations ....................... 69 
   Preparation of lenalidomide for in vitro studies ............................. 69 
   Statistical analysis ......................................................................... 69 
 
 
Chapter 3: CD28 expression is required for lenalidomide immune 

modulation: identification of a potential mechanism of drug resistance ......... 71 
  Introduction .............................................................................................. 71 
  Results ..................................................................................................... 73 
  Lenalidomide induces robust interleukin-2 (IL-2) production 

in the absence of CD28 co-stimulation ....................................... 73 
  Surface expression of CD28 is increased after LEN 

treatment upon TCR activation ................................................... 76 
  CD28 surface expression is essential for LEN-induced IL-2 

production ................................................................................... 78 



www.manaraa.com

iii 

  CD28null cells are resistant to LEN ................................................ 79 
  Accumulation of CD28- T-cells in MDS patients is associated 

with LEN failure .......................................................................... 81 
  Discussion ............................................................................................... 85 
  Materials and Methods ............................................................................. 88 
   Healthy Donor T-cell isolation and activation ................................ 88 
   Preparation of lenalidomide for in vitro studies ............................. 89 
   T-cell proliferation .......................................................................... 89 
   Cell Sorting ................................................................................... 90 
   siRNA Transfection and ELISA ..................................................... 90 
   RT-qPCR ...................................................................................... 91 
   Chromatin Immunoprecipitation (ChIP) ......................................... 91 
   MDS Patient Samples ................................................................... 92 
   Analysis of T-cell naïve and memory populations ......................... 93 
 
 
Chapter 4: Lenalidomide and the IMiDs inhibit the negative regulatory 

activity of protein phosphatase 2A in T-cells to mediate T-cell co-
stimulation ..................................................................................................... 94 

  Introduction .............................................................................................. 94 
  Results ..................................................................................................... 97 
  PP2A activity in T-cell lines and primary T-cells is inhibited 

with lenalidomide treatment ........................................................ 97 
  PP2A catalytic activity is inhibited after in vitro treatment with 

the IMiDs .................................................................................... 99 
  Virtual computer modeling reveals a potential direct 

interaction of the IMiDs within the active site of the PP2A 
catalytic subunit ........................................................................ 101 

  Mutations in the lenalidomide-binding sites of the PP2A 
catalytic subunit render PP2A enzymatically inactive ............... 103 

  Discussion ............................................................................................. 105 
  Materials and Methods ........................................................................... 109 
   Cell culture and creation of stably transfected cell lines .............. 109 
   Drug treatment and cell lysate preparation ................................. 110 
   Phosphatase activity assay ......................................................... 111 
   T-cell isolation and stimulation .................................................... 112 
   Virtual Modeling .......................................................................... 112 
   Site-directed mutagenesis ........................................................... 113 
 
 
Chapter 5: Discussion ...................................................................................... 115 
 
References Cited .............................................................................................. 122 
 
About the Author ................................................................................... END PAGE 



www.manaraa.com

iv 

 
 
 
 
 
 

LIST OF TABLES 
 

Table 1. Characteristics and hematologic responses in MDS patients 
treated with lenalidomide. ............................................................................... 49 



www.manaraa.com

v 

 
 
 
 
 
 

LIST OF FIGURES 
 
Figure 1. T-cell co-receptors that shape responsiveness to activation ............... 14 
 
Figure 2. Schematic of CD28 receptor signaling motifs ...................................... 16 
 
Figure 3. Schematic of T-cell signaling ............................................................... 17 
 
Figure 4. Mechanisms of tumor immune escape ................................................ 27 
 
Figure 5. Structures of the immunomodulatory drugs ......................................... 30 
 
Figure 6. Schematic of various T-cell signaling pathways up-regulated 

after lenalidomide treatment ............................................................... 39 
 
Figure 7. Lenalidomide alone, or in combination with a variety of 

therapeutic monoclonal antibodies, increases NK-cell mediated 
killing of multiple myeloma cells ......................................................... 42 

 
Figure 8. T-cells from MDS patients are inherently anergic ................................ 51 
 
Figure 9. Lenalidomide augments Th1 type cytokine production and 

proliferation in MDS patient T-cells in vitro ......................................... 53 
 
Figure 10. Naïve T-cells and immune reconstitution after lenalidomide 

treatment in hematologic responders ................................................ 55 
 
Figure 11. Absolute lymphocyte count remains unchanged during 

lenalidomide treatment ...................................................................... 57 
 
Figure 12. Lenalidomide reverses T-cell tolerance in MDS patients with 

hematologic response through increased proliferation and 
cytokine production in vivo ................................................................ 58 

 
Figure 13. Increase in naïve cell production after lenalidomide treatment 

correlates with increased proliferation, IL-2 production, and 
IFN-γ production ................................................................................ 60 

 
Figure 14. Naïve T-cell proliferation after lenalidomide treatment correlates 

with younger age in hematologic responders .................................... 61 



www.manaraa.com

vi 

 
Figure 15. Lenalidomide increases IL-2 production in the absence of CD28 

external ligation ................................................................................. 74 
 
Figure 16. CD28 downstream transcriptional element is activated after 

LEN treatment ................................................................................... 76 
 
Figure 17. Surface expression of CD28 is increased after LEN treatment 

upon TCR activation .......................................................................... 77 
 
Figure 18. Knockdown of CD28 expression abrogates LEN activity in T-

cells ................................................................................................... 80 
 
Figure 19. CD28null T-cells are associated with LEN Response ......................... 82 
 
Figure 20. Non-Responder MDS patients have higher levels of Terminal 

Effector Memory (TEM) CD8+ T-cells and lower levels of 
CD28+ T-cells ................................................................................... 84 

 
Figure 21. Lenalidomide increases IL-2 production and inhibits 

phosphatase activity of PP2A isolated from Jurkat and primary 
T cells ................................................................................................ 98 

 
Figure 22. PP2A catalytic activity is inhibited after in vitro treatment with all 

of the IMiDs ..................................................................................... 100 
 
Figure 23. Virtual modeling of the IMiDs reveals potential interacting sites 

within the catalytic pocket of the PP2Ac subunit ............................. 103 
 
Figure 24. Mutations of theorized IMiD-interacting sites alters PP2A 

enzymatic activity ............................................................................ 105 



www.manaraa.com

vii 

 
 
 
 
 
 

ABSTRACT 

 T-cells are lymphocytes that make up part of the adaptive arm of the 

immune system, and are essential for efficient protection from and eradication of 

viruses and pathogens. T-cells not only play an important role in protection from 

external agents, but also regulate and prevent activation towards self-peptides 

and detect and remove erratically growing cells. Alterations in T-cell activation 

and suppression contribute to auto-immunity, immunocompromised disorders, 

and cancer progression.  

 The immune system, and T-cells in particular, provides daily surveillance, 

recognition and destruction of aberrant cells. Although the immune system is 

proficient at suppressing malignant progression, tumor cells acquire various 

methods of immune evasion. Myelodysplastic Syndrome (MDS) is a pre-

malignant dysplastic disorder of the bone marrow characterized by ineffective 

hematopoiesis and clonality in the myeloid lineage, where lack of immune 

response has been implicated in the propensity for progression to acute myeloid 

leukemia (AML). Leukemia progression is associated with the acquisition of 

complex genetic abnormalities. Alterations in immune system regulation have 

been implicated in various stages of the disease process, although the role of the 

immune system in response to several therapies in MDS has not been fully 

discovered. 
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 Lenalidomide is a small molecule therapeutic preferentially effective in 

MDS patients with an interstitial chromosome 5q deletion (del(5q)). Improved 

erythropoiesis has also been reported to occur in 20-30% of low-risk, non-del(5q) 

patients. Although lenalidomide is a potent immunomodulatory drug that 

potentiates T-cell and NK-cell responses, the T-cell compartment in MDS is 

highly deregulated by aberrant repertoire skewing, decreased function and 

abnormal naïve and memory cell homeostasis.  The presence of lymphoid 

infiltrates in the bone marrow of lenalidomide-responsive patients suggests that 

T-cells may participate in the hematopoietic response, but it is unclear if 

lenalidomide is capable of reversing these functional T-cell defects.  We 

therefore assessed immunological changes in low-risk MDS patients before and 

after 16-weeks of lenalidomide therapy, and assessed the relationship to 

erythroid response. Although MDS T-cells were anergic prior to treatment, we 

have shown that T-cells in responders have a significant increase in antigen-

induced proliferative response and T helper type-1 (Th1) cytokine production (IL-

2, IFN-γ, TNF-α) compared to non-responders. The change in function positively 

correlated with an increase in naïve T-cells and a decrease in memory cells, 

indicating that lenalidomide has immunomodulatory activity to reverse anergy in 

MDS.  

Although it is known that lenalidomide may increase T-cell activation and 

proliferation in the absence of co-stimulatory signals, a direct mechanism of 

action has yet to be elucidated. Since CD28 is one of the most important co-

stimulatory molecules deregulated in cancer, we therefore set out to determine if 
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the expression of CD28 was essential for lenalidomide’s mechanism in T-cells. 

We knocked out CD28 expression in healthy donor T-cells, and sorted on 

inherently deficient, CD28null, T-cells that accumulate in older healthy donors and 

found that lenalidomide-induced proliferation and function were completely 

ablated within the CD28null subset.  These data indicate the immunotyrosine-

based activation motifs (ITAMs) on the intracellular domain of the CD28 receptor 

are necessary for lenalidomide action.   

Interestingly, during the natural aging process, repeated exposure to 

antigens results in the accumulation of CD28null T-cells that are phenotypically 

distinct and functionally deficient due to excessive proliferative history in vivo.  

We therefore examined whether CD28 expression on MDS patient T-cells 

affected responses to lenalidomide, and if this could be used as a predictive 

biomarker of responsiveness. We found that patients who fail lenalidomide 

therapy had higher CD8+ Terminal Effector Memory (TEM), which are inherently 

CD28null, and that non-responders had an overall increase in CD4+ and 

CD8+CD28null T-cells, as well as an increase in CD28null cells within the TEM 

compartment compared to hematologic responders. 

We then sought to determine the particular protein target of lenalidomide 

responsible for increased CD28 receptor signaling in T-cells. Several targets in a 

variety of cell types have been postulated, although the direct mechanism in T-

cells is unclear. Our group has previously shown that lenalidomide inhibits the 

activity of two haplodeficient phosphatases located within the commonly deleted 

region (CDR) on chromosome 5q in the MDS myeloid clone, Protein 
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Phosphatase 2A (PP2A) and Cdc25c. PP2Ac is known to bind CD28 and is 

hypothesized to inhibit T-cell co-stimulation.  Therefore, it is plausible that 

lenalidomide and other IMiDs inhibit the phosphatase activity of PP2A which 

leads to increased activation of T-cell proximal signals dependent on CD28 

expression. We examined this hypothesis using molecular modeling and virtual 

screening and found that all of the IMiDs (lenalidomide, pomalidomide, and 

thalidomide) can theoretically interact with the catalytic pocket of the PP2A 

heterotrimer, potentially inhibiting PP2Ac activity. In vitro phosphatase activity 

assays supported these findings as lenalidomide-inhibition of PP2Ac activity was 

seen in both ad293 and Jurkat cell lines, and in primary T-cells. Mutations of 

theorized lenalidomide hydrogen-bond sites within the catalytic pocket of PP2A 

rendered the enzyme catalytically dead, indicating that these are important 

residues for enzymatic activity, but unfortunately could not be used to determine 

if lenalidomide activity was disrupted by mutation of those sites. 

These data together suggest that the ability of lenalidomide to augment 

immune activation in vivo in MDS patients, and potentially other diseases, is 

extremely important to patient response. Also, that CD28 expression on T-cells is 

essential for lenalidomide immune-mediated tumor eradication through CD28 

downstream signaling, and potentially through inhibition of PP2A. These results 

are useful in designing future lenalidomide-combination therapy trials in other 

hematologic and solid malignancies, and could be used to help stratify patients 

for future therapeutic decisions in MDS and other malignancies.  
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CHAPTER 1 
 

Background 
 

A note to the reader: Portions of this chapter have been previously published in 
a review article in the journal Advances in Hematology, McDaniel et al. 2012. (1) 
and has been reproduced here with permission from the publisher. 
 
 
T-cells 

T-cells, along with B-cells and Natural Killer (NK) cells make up the 

lymphoid compartment, with T- and B-cells comprising the adaptive arm of the 

immune system. The immune system has both innate and adaptive mechanisms 

to seek out, recognize, and destroy foreign pathogens such as bacteria, viruses, 

helminthes, etc., and even erratically-growing autologous cells. T-cells express 

antigen-specific receptors (T-cell Receptors, TCRs) that allow them to specifically 

recognize over a million different protein epitopes, both self- and non-self, to 

stave off attack from the thousands of potential pathogens we encounter on a 

daily basis. 

 T-cell development. The creation of a lymphocyte compartment occurs in 

the thymus where cells are selected for their ability to recognize and destroy 

foreign pathogens while displaying tolerance towards self-antigens. Immature “T-

cell precursors” are produced from hematopoietic stem cells during 

hematopoiesis within the bone marrow, and home to the thymus through a 

variety of chemo-attractants, including CCL25 and CCL21, where they develop 
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and mature  (2, 3). The thymus is a primary lymphoid organ with several different 

structural features, including a cortex and medulla that separate and organize the 

various stages of lymphocyte development. When an immature lymphocyte 

enters the thymus, it goes through several CD4/CD8 “double negative” stages 

(DN1 to DN4) marked by lack of surface receptor expression or down-regulation 

of CD44 and CD25 (4). During the DN3 stage, the TCR-β chain undergoes 

irreversible V(D)J recombination via the recombination activating gene (RAG), 

generating a unique sequence (5). T-cells then continue to the DN4 stage where 

they undergo VJ TCR-α chain gene rearrangement. T-cells are then either CD4 

or CD8 positive, and undergo positive thymic selection. Positive selection 

involves expression of relatively rare, low-affinity self-peptides that are necessary 

to ensure the creation of a functional αβTCR. Full maturation of the TCR is not 

complete until self- MHC-recognition within the thymus (6). Interestingly, the 

TCR-α chain can undergo multiple VJ recombination events to allow for the 

creation of a functional positively-selected TCR (7, 8). T-cells surviving positive 

selection then undergo negative selection, where high-affinity binding of the TCR 

and secondary signal induction promotes apoptosis of self-reactive T-cells, 

preventing them from being released into the periphery where they may induce 

auto-immune reactions (9, 10). 

 T-helper and cytotoxic T-cells. There are two distinct subsets of T-cells 

involved in adaptive immunity, namely CD4+ T-helper cells (Th) and CD8+ 

cytotoxic T-cells (Tc). CD4+ cells are helper T-cells that recognize antigen 

peptides presented on MHC-II expressed on antigen presenting cells. Activation 
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of Th cells induces proliferation and robust cytokine secretion to provide support 

to other helper T-cells and Tc cells in a variety of pathogenic settings. CD4+ T-

cells can differentiate in the periphery into a variety of different T-helper subtypes 

based upon their cytokine secretion profile, including Th1, Th2, Th17, T follicular 

helper (Tfh) and induced regulatory T-cells (iTreg) (11). The differentiation 

decision is actually governed by cytokine exposure within the microenvironment 

of the non-differentiated CD4+ T-cells, and to some extent on the strength of the 

TCR-antigen interaction (12). Exposure of naïve CD4+ T-cells to various 

cytokines in the presence of TCR-stimulation induces epigenetic changes at 

DNA-loci that encode for subset-specific cytokines (13-15). It was originally 

thought that commitment to one T-helper cell lineage was a permanent 

epigenetic imprint, but recent evidence suggests that inter-conversion between 

the different lineages can be induced using epigenetic modifying drugs (16), and 

may occur between Th1 and Th2 cells under appropriate inflammatory conditions 

in vivo (17).  

 Each T-helper subset has been defined based upon unique gene 

expression profiles, and their roles in providing T-cell cytokine help in different 

pathological settings. Interferon-γ (IFN-γ) and interleukin-12 (IL-12) polarize 

CD4+ T-cells towards the Th1 lineage, characterized by production of IFN-γ and 

IL-2 and activation of the T-bet transcription factor (18). Th1 are involved in 

cellular immunity and are extremely important in providing help to CD8+T-cells 

during microbe infection, as well as enhancing anti-tumor activity of CD8+ tumor-

antigen specific T-cells (19, 20). IL-4 polarizes CD4+ T-cells to become Th-2 
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through induction of GATA3 transcription factor expression. These cells secrete 

IL-4, IL-5, and IL-13 cytokines important for humoral B-cell support and they are 

essential for protection against helminthes and other multicellular pathogens 

(21). Th17 or “T-inflammatory” cells are a more recently defined population of T-

helper cells that require (ROR)γt transcription factor expression and are induced 

through exposure to IL-6, IL-23, IL-21, and TGF-β (22). Th17 cells secrete IL-17 

and IL-22, and play a role in the clearance of extracellular bacteria and fungi and 

are involved in exacerbating GVHD after bone marrow transplantation (22, 23). 

Aberrant Th1 and Th17 cell activation is involved in organ-specific auto-immunity, 

whereas Th2 erratic signaling is involved in allergy and asthma. Another recently 

defined subset of T-helper cells are the T-follicular helper cells (Tfh) which 

migrate to follicles to provide help in B-cell maturation and antibody production 

and are induced through IL-21 exposure (24-26) and activation of Bcl-6 (27).  

 Another unique subset of CD4+ T-cells are the regulatory T-cells defined 

by forkhead box P3 (denoted Foxp3 in mice and FOXP3 in humans) expression,  

which help to maintain immune system homeostasis and regulate effector T-cell 

responses to prevent auto-immunity. Mice lacking T-regs have overwhelming 

Th1 and Th2-induced autoimmunity  (28-30). There are two types of Tregs, 

including natural Tregs (nTregs) that are produced and develop in the thymus 

and are characterized through CD4+CD25+ expression, and TGF-β-induced 

Tregs (iTregs) that are induced to express Foxp3 and become regulatory T-cells 

in the periphery (31, 32). Tregs are also involved in promoting immune evasion in 

the setting of tumors by suppressing tumor-specific cytotoxic T-cells. 
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 CD8+ T-cells are cytotoxic T-cells (Tc) that recognize peptides presented 

through MHC-I not only on antigen presenting cells, but all cells within the body. 

CD8+ T-cells are also called “T-killer” cells because activation of these cells 

against a target cell causes them to release perforin and granzymes directly into 

the target cell, activating the caspase cascade and inducing cell death (33-35). 

Like CD4+ T-cells, there are different Tc subsets that have different cytokine 

profiles similar to their corresponding CD4 counterparts (i.e. Tc1, Tc2, Tc17), 

although the function of the separate subsets in different pathological settings 

has not been as extensively defined as in CD4 T-cells (36, 37).  

 Memory T-cells. Once naïve T-cells, both CD4+ and CD8+ are stimulated 

by their cognate antigen, they expand and eradicate the pathogen, and then 

during the contraction phase either become memory T-cells or die. The T-cell 

fate is usually governed by the strength of signal through the TCR, as well as 

concurrent cytokine activation (38). A majority of the activated population will 

undergo activation induced cell death (AICD) and will be eliminated, while others 

will die due to neglect, and the remainder of the population will become memory 

cells.  

There are three types of memory T-cells: Central Memory (TCM), Effector 

Memory (TEM), and Terminal Effector Memory (TTEM). Central Memory T-cells are 

CD45RA-CCR7+CD62L+, with expression of the latter two receptors necessary 

for cell extravasation and migration to the secondary lymphoid organs where they 

have limited effector function until secondary stimulation (39). TCM  provide 

reactive memory and upon secondary activation will proliferate and differentiate 
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into effector cells (40). Effector Memory T-cells are CD45RA-CCR7-CD62L-, 

express high amounts of perforin, and home to peripheral tissues where they are 

activated rapidly to produce effector cytokines and provide immediate protection 

against pathogens (41, 42). The third memory population is CD45RA+CCR7-

CD62L- Terminal Effector Memory cells, characterized as “end-stage” 

differentiation. These cells are thought to accumulate following intense cytokine-

driven proliferation (43). Interestingly, CD45RA+ TTEM cells are generally 

senescent with a majority of the population lacking the CD28 co-stimulatory 

molecule, and increase through aging and in autoimmune diseases (44, 45). This 

particular memory population is found only in humans, as murine T-cells do not 

down-regulate the CD28 receptor. Recently it has been determined that the 

senescence of these cells is due to decreased p38-MAPK pathway signaling, 

and since they have normal telomerase activity, their senescence is potentially 

reversible (46).  There is some controversy though about the stages of memory 

cell development. It is unclear if T-cells undergo linear transformation from naïve 

to TCM and then progress to TEM, and then TTEM after multiple rounds of 

stimulation (47, 48), or if there is asymmetric memory development. Interestingly, 

it was recently discovered that there is asymmetric memory T-cell division in 

response to antigen re-challenge, indicating that there may be a subset of T-cells 

that remain in the TCM subset after activation (49). 

Memory T-cells are an extremely important component of the adaptive 

immune system, as they persist throughout a person’s lifetime through 

homeostatic proliferation to provide antigenic memory and swift reaction time to 
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antigen re-exposure. Memory T-cells turnover at a very slow rate in the absence 

of their cognate antigen through exposure to the common-γ chain cytokines 

Interleukin-7 (IL-7) and IL-15, allowing for continued maintenance of the memory 

compartment (50-53).  IL-7 and IL-15 are necessary for memory maintenance of 

both CD4+ and CD8+ T-cells, but not memory induction (52, 54, 55). CD4+ T-cell 

help, likely through IL-2 secretion, is an absolute requirement for the generation 

of functional CD8+ T-cell memory (56). Factors driving the generation of CD8+ 

effector vs. memory cells are not completely understood, but it  seems to require 

the expression of the transcription factor eomesodermin (eomes, a member of 

the T-bet family of transcription factors) and exposure to IL-2 (57, 58). Alterations 

within homeostatic regulation of the memory cell compartment are found in aging 

individuals, cancer, and several autoimmune disorders, alluding to the 

importance of memory T-cell generation and maintenance.  The strength of 

antigen stimulation, exposure to homeostatic cytokines, and the phenotype of the 

memory compartment are all extremely important in shaping the immune reaction 

to pathogens and cancer.  

Aging in the immune system. As with many other systems in the body, 

aging induces profound alterations within both the innate and adaptive arms of 

the immune system, and in turn affecting the immune system’s ability to respond 

to and eradicate pathogens. Unlike T and B-cells, NK cell numbers actually 

increase with age, and normal healthy aging is associated with only a slight 

decrease in proliferation and response to IL-2 (59). Overall, NK-cell cytotoxicity 

and IFN-γ production decrease on a “per cell basis” as one ages, but only 
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significant decreases in cytotoxicity are associated with increased morbidity and 

mortality associated with infections and poor influenza vaccination response (60-

62).  The humoral immune response is also dramatically altered through aging. 

The phenotype of the B-cell compartment is altered through a decrease in overall 

naïve B-cell numbers and an increase in memory B-cells, leading to overall 

decreased BCR diversity (63, 64). The B-cells, like T-cells, also have a decrease 

in co-stimulatory molecule expression, antibody affinity, and a decreased ability 

for antibody isotype switching which contributes to an overall reduction in 

infection-fighting capacity (63, 65) . Included with these changes are deficiencies 

within the T-cell compartment leading to inefficient T-cell help and contributing 

greatly to overall decreased humoral immune response (66) . 

Aging also has a particularly pronounced effect on the phenotype and 

function of the T-cell compartment, namely alterations in memory T-cell 

development and differentiation, as well as cellular senescence (67). Thymic T-

cell production essentially stops once a child has finished growing and has 

sufficiently seeded the peripheral T-cell compartment with naïve T-cells (68). The 

thymus begins to involute around the age of 20, replacing the functional thymic 

cortex and medulla with adipose tissue, and causing a steady decline in the 

release of new naïve T-cells into the periphery (69, 70). Therefore, naïve T-cells 

produced in young humans must persist and survive throughout one’s lifetime. 

Steady-state naive T-cell numbers are maintained in the periphery via 

homeostatic, mostly TCR-independent, mechanisms through cytokines like IL-7 

and IL-15 (71, 72). But, the ability for naïve T-cells to continually divide and keep 
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populating the T-cell compartment diminishes with age because of the 

accumulated numbers of memory T-cells that proliferate and crowd the T-cell 

niche in both the CD4 and CD8 subsets.  

Not only does the production of naïve T-cells decline with age, but also the 

function of memory T-cells that have undergone many rounds of homeostatic 

proliferation, and newly-generated memory T-cells as well. Poor memory T-cell 

response and the loss of cognate T-helper cell function among CD4+ T-cells are 

one of the causes of poor vaccine efficacy in the elderly (73, 74). Aged T-cells 

have decreased calcium flux after TCR stimulation, as well as decreased ability 

to produce IL-2 and other cytokines, although some pro-inflammatory functions 

are enhanced (75, 76).  

One of the most profound and consistent phenomenon observed with 

aging and the immune system is the accumulation of terminally differentiated 

CD45RA+CD28- T-cells (77, 78), which can also be accelerated through chronic 

CMV infection (79, 80).  Humans over the age of 80 have approximately 10-15% 

CD4+CD28- T-cells and approximately 60% CD8+CD28- T-cells (44) that have 

decreased T-cell receptor diversity (81) and decreased ability to proliferate in 

response to cognate antigen (82). CD28- terminally differentiated memory T-cells 

are hypo-responsive in their inability to fully support stimulation with the lack of 

the co-stimulatory molecule, demonstrating a decreased ability to secrete IL-2 or 

induce telomerase expression, and are more susceptible to activation induced 

cell death (AICD) due to their long proliferative history in vivo (83-85). The 

accumulation of CD8+CD28- T-cells negatively impacts immune responses to 
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foreign antigens in the elderly because these cells proliferate and expand, 

constraining the adaptive immune response through competition for available 

space within the T-cell niche, restricting naïve T-cell homeostatic proliferation.  

There are several documented molecular mechanisms for the perpetual 

loss of CD28 surface expression on terminally differentiated T-cells. Enhanced 

TNF-α exposure has been experimentally shown to decrease CD28 surface 

receptor expression on T-cells, suggesting that these cells are produced in 

inflammatory conditions, and persistent infection, like CMV, has been 

demonstrated to drive their accumulation and induce pre-mature aging of the 

immune system (86, 87). Interestingly, CD4+CD28- T-cells are readily triggered 

by inflammation and thereafter perpetuate and amplify the inflammatory process 

(88). CD28 surface expression is transiently down-regulated after ligation with 

B7-1/2 or with anti-CD28 antibody ligation, but is usually re-expressed on the cell 

surface within 48 hours.  Under persistent T-cell stimulation, CD28 expression is 

gradually reduced and eventually lost without the ability to re-induce expression, 

suggesting that transcriptional silencing controls receptor down-regulation. 

Utilizing a CD28-reporter gene construct method, it was discovered that T-cells 

lacking CD28 are not able to induce expression of CD28 due to a lack of protein 

complex formation that binds to the CD28 initiator (89-91). Two proteins within 

the complex, nucleolin and A isoform of heterogeneous nuclear riboprotein-D0 

(hnRNP-D0A), have been shown to be essential for the induction of CD28 

expression, and a coordinate loss of alpha-beta INR bound-complexes 

contributes to decreased CD28 expression in senescent T-cells (89).  
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Overall, there are significant changes in all the immune system 

compartments associated with the deterioration of the immune system during 

aging, but the accumulation of CD28- T-cells is a significant player contributing to 

the reduced overall responsiveness to pathogens and viruses, and likely to the 

decreased ability to eradicate tumor cells. Exhausted T-cells usually develop in 

the presence of highly replicated viruses and tumors through increased inhibitory 

molecule interaction (like PD-1) and along with the increased expression of TNF-

α in the tumor microenvironment, contributing to increased immune senescence 

(92, 93). The impact of the accumulation of CD28- T-cells on the immune 

system’s ability to eradicate tumors has not been fully elucidated, but is important 

to understand in relation to the use of immunotherapeutic vaccines for cancer.  

 T-cell activation. TCR binding to cognate ligand presented on antigen 

presenting cells induces receptor clustering, phosphorylation of downstream 

signaling molecules, and activation of transcription factors leading to proliferation, 

cytokine production and effector/regulatory functions.  There are multiple 

important co-receptors in the B7-CD28 and TNF-Receptor superfamilies involved 

in this process, such as CD28, cytotoxic T lymphocyte antigen 4 (CTLA-4), 

inducible co-stimulatory molecule (ICOS), programmed cell death protein-1 (PD-

1) and 4-1BB and OX40, respectively. These receptors have both activating and 

inhibitory properties involved in shaping and altering the T-cell response upon 

association with cognate ligand (94, 95), as seen in Figure 1.   
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Co-stimulatory receptors. Co-stimulatory receptors, including 

CD28, ICOS, 4-1BB, and CD40L, expressed on T-cells are necessary for a fully 

competent T-cell response. CD28 appears to be the most important co-

stimulatory molecule involved in activation and proliferation, and will be described 

in great detail later in this chapter. ICOS is a more recently discovered co-

stimulatory molecule that is not natively expressed on naïve T-cells, but is up-

regulated quickly on effector T-cells upon activation, indicating it may provide co-

stimulatory signals to activated T-cells (96-98). Ligation of ICOS by ICOS-L (B7h) 

on APCs is involved in co-stimulation of both Th1 and Th2-type effector 

responses (99, 100), and is necessary in regulating immunoglobulin-isotype 

class switching and germinal center formation (101). 4-1BB and OX40 are 

members of the tumor necrosis factor receptor (TNFR) family that bind to 4-1BBL 

and OX40L respectively on antigen presenting cells, and are also involved in co-

stimulation. The expression of both molecules is triggered by TCR/CD28 ligation, 

as well as IL-2 binding, and the ligation of these receptors increases T-cell 

proliferation and up-regulation of anti-apoptotic molecules such as Bim, Bcl-xl, 

and Bcl-2 (102-104). Their role appears to depend on T-cell activation, with 4-

1BB and OX40 ligands important in regulating the frequency of effector memory 

cells generated during recall responses while enhancing T-cell function directly 

through induction of IL-4 and IFN-γ production (105).   

  Co-inhibitory receptors. CTLA-4 is the best characterized T-cell 

co-inhibitory receptor that is essential in regulating T-cell activation and 

tolerance. CTLA-4 expression on naïve T-cells is low and becomes up-regulated 
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after activation to intrinsically regulate CD28 signaling through competition for 

B7-1/2 (CD80/CD86) binding (106, 107) (Figure 1). In naïve T-cells, CTLA-4 

accumulates in the golgi and is released to the external membrane fraction upon 

activation (108), where it binds to B7-1 or B7-2 to disrupt CD28 stabilization at 

the immune synapse, effectively shutting off T-cell co-stimulation and signaling 

(109). The importance of CTLA-4 in regulating T-cell homeostasis not only lies in 

its ability to down-regulate activation after stimulation, but in inducing tolerance 

and suppression mechanisms of regulatory T-cells as well. CTLA-4 knockout 

mice die within 3-4 weeks of age due to lethal polyclonal CD4+ T-cell dependent 

lymphoproliferation and autoimmunity, leading to multi-organ failure (110-112). 

Interestingly, the intracellular cytoplasmic tail of CTLA-4 is not always necessary 

to induce T-cell inhibition, as mouse models with mutant intracellular motifs were 

still able to regulate T-cell signaling. This data suggests that CTLA-4 attenuates 

T-cell activation by physical competition of the extracellular domain binding to 

B7-1/2 ligands and displacement of CD28 (113, 114).  

PD-1 is another co-inhibitory molecule from the B7-CD28 family that is 

highly expressed on activated CD4+ and CD8+ T-cells, B-cells, and myeloid cells 

(115). PD-1 ligation by either PD-L1 or PD-L2 has been shown to abrogate TCR-

mediated proliferation and cytokine production in activated T-cells, and cannot be 

overcome through strong CD28 co-stimulatory signals (116, 117). PD-1 only 

exerts inhibitory activities in the presence of TCR signaling, and does so through 

activation of SHP-2, which de-phosphorylates signaling molecules within the 

proximal-TCR signaling cascade, halting TCR-induced activation (118). PD-L1 
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expression on tumor cells inhibits tumor-specific killing by CD8+ cytotoxic T-cells, 

and up-regulation of PD-1 expression on functionally exhausted antigen-specific 

T-cells indicates the negative role PD-1 plays in T-cell activation and 

proliferation. On the reverse, PD-1 plays an extremely important role in regulating 

normal T-cell homeostasis and prevention of auto-immunity, as PD-1 knockout 

mice of the C57BL/6 strain develop progressive arthritis and a lupus-like 

syndrome  (119), or early onset cardiomyopathy in the Balb/c strain (120). These 

data all demonstrate the importance of co-inhibitory and co-stimulatory molecules 

in shaping T-cell responses under normal conditions, and how erratic expression 

or activation of either can lead to severe pathologic conditions. 
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Figure 1. T-cell co-receptors that shape responsiveness to activation. T-cell 
co-receptors bind to ligands expressed on antigen presenting cells (APCs), left. 
CD40L, CD28, 4-1BB and ICOS are co-stimulatory molecules that 
enhance/activate downstream signaling upon TCR ligation. PD-1 and CTLA-4 
are co-inhibitors that turn off and inhibit T-cell activation after TCR ligation. 

 

 

CD28 

CD28 structure. CD28 is a 44 kDa co-stimulatory receptor on T-cells that 

synergizes with the TCR to induce downstream intracellular signaling, cytokine 

production, actin rearrangement, and prevent apoptosis and anergy upon ligation 

with CD80/CD86 (B7-1/2) on APCs (121, 122). CD28 is expressed on the 

surface of T-cells as a glycosylated, disulfide-linked homodimer (123), with an 

extracellular ligand-binding domain, a transmembrane region, and an intracellular 

cytoplasmic tail containing several activation sequences, as CD28 lacks intrinsic 

kinase activity (Figure 2). The cytoplasmic tail of CD28 contains two 

immunoreceptor tyrosine-based activation motifs (ITAMs), namely a YMNM (i.e. 

YXXM) SH-2-binding domain and PYNPP SH-3-binding domain, that are 

essential for the binding of kinases and adapter molecules (124). The tyrosine 

(Y191) in the YMNM motif allows for binding of p85 subunit of PI3K and the 

guanine nucleotide exchange factor Vav1 through the Grb2 adaptor molecule 

(Figure 2) (124-126).  



www.manaraa.com

16 

 

 

Figure 2. Schematic of CD28 receptor and signaling motifs. CD28 is a 
transmembrane receptor comprised of an extracellular ligand binding domain, a 
transmembrane domain (TM), and an intracellular tyrosine-rich region. The 
cytoplasmic tail contains 2 ITAMs (bold) that are phosphorylated upon activation 
(by Lck) to recruit signaling molecules, some of which are indicated above (Grb2 
and p85).  

 

CD28 signaling cascade. Knockdown of CD28 leads to decreased T-cell 

activation and reduces memory T-cell generation (127), and its expression is 

necessary for proliferation and homeostasis of regulatory T-cells (128). When the 

TCR encounters its respective antigen presented on MHC, tyrosines within the 

ITAM on the TCR/CD3 complex become phosphorylated by src-related kinases 

Lck and fyn (129, 130). Phosphorylation of ITAM motifs on the TCR recruits 

kinases Zap70, adaptor molecule Grb2, phosphoinositide 3-kinase (PI3K) and 

other SH-2 domain containing proteins to the TCR/CD3 complex, and further 

promote downstream activation and nuclear localization of transcription factors, 

like NF-kB and AP-1 (129, 131, 132).  This activation cascade is essential, but 

not sufficient, for full TCR-induced signaling response.  

Important kinases in the TCR signaling pathway, like lck, phosphorylate 

tyrosines within the YXXM and proline-rich PYAPP motif on the cytoplasmic 

region of CD28 leading to activation of PI3K, MAPK, and NF-κB pathways 
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(Figure 3) (124, 126, 133, 134). The PYAP motif also associates with Filamin A, 

an actin binding protein involved in scaffolding for lipid raft generation which is 

necessary for the formation of a functional immune synapse (135).   

 

Figure 3. Schematic of T-cell signaling. TCR ligation induces activation of 
various kinases, including lck, which phosphorylates tyrosines within the 
intracytoplasmic tail of CD28, increasing downstream signaling and activation of 
PKC-θ, MAPK, and other signaling pathways. These pathways lead to the 
activation of classic T-cell transcription factors like AP-1, NFAT-1, and NF-κB that 
induce secretion of the T helper type 1 (Th-1) cytokines IL-2, tumor necrosis 
factor-α (TNF-α), and Interferon-γ (IFN-γ), as well as promote proliferation and 
prevent apoptosis. 

 

There has been substantial difficulty in elucidating distinct signaling 

cascades emanating from TCR ligation versus CD28 ligation, as there is 
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significant cross-talk between the two pathways.  Vav1 activation has been 

shown to be necessary for superagonistic CD28 antibody activation of T-cells in 

the absence of TCR ligation, alluding to its importance in CD28-mediated 

signaling (133, 136). Vav is extremely important in the activation of Rho GTP-ase 

and actin mobility/re-organization (137). The ability of CD28 to signal in the 

absence of the TCR has been hypothesized, as seen in microarray data of T-

cells stimulated with anti-CD28 alone. Activation with only anti-CD28 results in an 

independent gene expression profile in comparison to anti-TCR signaling in the 

absence of CD28, but the significance of this remains controversial (138, 139). 

The relative importance of the ITAM motifs on the CD28 receptor in the activation 

of T-cells is also debated. Mutation of the proximal YXXM motif (Y170F) inhibited 

PI3K binding, but had no overt effects in vivo (140), although mutation of the 

proline-rich PYAP motif (to AYAA) abrogated proliferation and IL-2 and other 

cytokine expression (141). These data collectively suggest that signals 

emanating from the YXXM motif may be redundant, or that TCR ligation has 

sufficient activation. The activation of PYAP-binding proteins, however, appears 

to be essential for T-cell activation and most likely unique to CD28 signaling. 

CD28 is necessary for Interleukin-2 production. The requirement of 

CD28 expression for transcriptional activation of the inerleukin-2 (IL-2) promoter 

is not contested. A 50-fold increase in IL-2 secretion by both transcriptional and 

post-transcriptional mechanisms occurs after CD28 co-stimulation compared to 

TCR activation alone (142). Moreover, CD28 knockout mice retain the ability to 

proliferate in response to stimulation, although reduced compared to WT 
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counterparts, but completely lack the ability to express IL-2(143).  The p85 

subunit of PI3K binding to the YMNM motif leads to activation of the Akt pathway, 

inducing phosphorylation of mTOR, IκB and other molecules that induce the 

activation of NF-κB, c-fos and c-jun (AP-1), and OCT-1 that induce IL-2 gene 

expression and the up-regulation of pro-survival proteins like Bcl-xL and Bcl-2 

(144) (Figure 3).  

Although PI3K activation is important to augment CD28 signaling, 

signaling through activation of PKCθ-Carma-1/Bcl-10/Malt-1 (CBM) complex 

pathway is specific and necessary for CD28-specific induced transcription factor 

activation of NF-κB and cAMP response element-binding protein (CREB) (145). 

Vav activation of Protein lipase Cγ1 (PLC-γ1) downstream of CD28 ligation 

activates diacylglycerol (DAG), that in turn induces PKC-θ activation and 

recruitment to the immunological synapse (146). Although Vav signaling is not 

specific to CD28, Vav activation is indispensible for CD28 mitogenic signaling 

(147). PKC-θ then phosphorylates caspase-recruitment domain-containing 

membrane associated guanylate kinase protein-1 (CARMA-1), allowing binding 

to Bcl10 creating the CBM complex that activates NF-κB and other transcription 

factors like CREB and NFAT to bind to the CD28 response element (CD28RE) 

on the IL-2 promoter (148, 149).  NFAT, AP-1, and NF-κB have several DNA 

binding-sites on the IL-2 promoter, but it was discovered that the binding of these 

transcription factors to a specific region 180bp upstream of the IL-2 

transcriptional start site was induced specifically by CD28 ligation (CD28RE), and 

were necessary to induce IL-2 expression (150). A transgenic mouse model of a 
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dominant negative form of T-cell specific promoter-driven CREB determined that 

dysfunctional CREB led to decreased proliferation and IL-2 production, cell-cycle 

arrest and apoptosis (151-153). Taken together, these discoveries suggest that 

the binding of transcription factors to the CD28RE is essential for IL-2 production 

and induced only through specific signals emanating from ligation of the CD28 

receptor. 

Negative regulation of CD28 signaling. There are several mechanisms 

inherent within T-cell biology to prevent hyper-activation of T-cells in the absence 

of co-stimulation, non-specific activation in the presence of low-affinity ligands, 

and to “turn off” signaling during T-cell contraction phase. Negative signaling 

regulation is necessary, in general, for prevention of autoimmunity.  

Cbl-b. One protein in particular that contributes to CD28 regulation 

and is involved in anergy induction is casitas b-lineage lymphoma-b (cbl-b). Cbl-b 

is an E3 ubiquitin-ligase in the cbl-protein family that can either mono-ubiquitinate 

proteins to alter signaling cascades or poly-ubiquitinate proteins, targeting them 

for degradation via the proteasome pathway (154). The importance of cbl-b in 

inhibiting the activation of the CD28 signaling cascade was first discovered 

through the use of cbl-b knockout mice (155, 156). In 2000, two groups 

independently published results from germline cbl-b knockout mice. Homozygous 

cbl-b deficient (cbl-b-/-) mice were hyper-responsive to TCR stimulation and 

intolerant to self-antigens, allowing the T-cells to proliferate and induce IL-2 

cytokine production in the absence of CD28 ligation leading to generalized 

autoimmunity in vivo. Crossing the cbl-b-/- mice with CD28-/- mice reversed the 
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hyperactivation and autoimmune phenotype, demonstrating the importance of 

cbl-b in CD28 regulation (157).  

 In the absence of CD28 ligation, cbl-b mono-ubiquitinates the p85 subunit 

of PI3K, prohibiting its recruitment to the CD28 receptor and preventing activation 

of the PI3K pathway (158). PKC-θ is also mono-ubiquitinated and targeted for 

lysosomal degradation by cbl-b, inhibiting activation of NFAT and NF-κB (159). 

Cbl-b regulation of CD28 is extremely important in self-tolerance and prevention 

of non-specific T-cell activation, but these processes are also involved in anergy 

induction. Repeated TCR stimulation in the absence of co-stimulatory molecule 

ligation drives the expression of several anergy inducing cell cycle inhibitors, 

tyrosine phosphatases, and cbl-b which help establish anergy (160, 161). Up-

regulation of cbl-b expression further inhibits the PI3K and PKC-θ pathways, as 

well as degradation-inducing ubiquitination of PLC-γ, leading to unstable immune 

synapses and defects in calcium mobilization (159, 162).  

TCR ligation in the presence of CD28 activation is necessary to produce a 

strong enough signal allowing for sustained activation of PKC-θ and PI3K, 

inducing full T-cell activation. After CD28 ligation, activated PKC-θ 

phosphorylates cbl-b, increasing cbl-b auto-ubiquitination and proteosomal 

degradation demonstrated through PKC-θ-cbl-b co-IP experiments, and elevated 

cbl-b expression in PKC-θ-/- T-cells (163, 164). 

  PP2A. Phosphatases have an important role in regulation of T-cell 

activation and reversion back to a resting phenotype upon stimulus removal, but 
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their study has been quite less extensive in the past years compared to that of 

kinases. CD45, SHP1, and SHP2 are protein tyrosine phosphatases (PTPs) with 

importance in both positive and negative regulation of T-cell signaling via the 

TCR, Zap-70, Syk, MAPK, and many other signal cascade molecules (129). 

Protein phosphatase 2A (PP2A) is a serine/threonine phosphatase that is also 

essential in regulating many cellular processes, including signal transduction 

pathways, cytoskeleton dynamics, cell-cycle regulation and cell mobility (165, 

166), as well as negative regulation of T-cell signaling. Protein phosphatase 2A 

(PP2A) is a heterotrimeric holoenzyme composed of an “A” scaffolding subunit 

and “C” catalytic subunit that together comprise the PP2A enzymatic core. 

Proper function and regulation of PP2A is regulated through the association of 

the core heterodimer to variable “B” regulatory subunits (167, 168). The ability of 

the PP2A core to trimerize with the over 16 members of the four B subfamilies 

(B, B’, B’’, B’’’) confers substrate specificity (166, 169), which is essential for 

proper PP2A regulation as PP2A makes up over 1% of total cellular protein in 

some tissues.  

PP2A has also been shown to have an important role in the negative 

regulation of IL-2 production in T-cells in systemic lupus erythematosus (SLE) 

(170, 171). Katsiairi et al, demonstrated that PP2A is over-expressed in SLE 

patients, and this over-expression leads to decreased CREB phosphorylation, 

inhibited CREB binding to the IL-2 promoter, and abrogated IL-2 expression. 

PP2A can directly de-phosphorylate CREB to affect its transcriptional regulation, 

as well as de-phosphorylate CARMA-1 to dissociate the CBM complex and 
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down-regulate T-cell activation (172, 173).  PP2A interacts with both the CD28 

and CTLA-4 receptors (174) to directly regulate their signaling pathways. It has 

recently been shown that the important motifs on CTLA-4 for interaction of the A 

and C PP2A subunits are a lysine rich region and amino acid Y182, respectively 

(175). Dissociation of this core a-c heterodimer from CTLA-4 likely inactivates 

downstream targets of TCR signaling (like Akt) because treatment with Okadaic 

Acid, a known inhibitor of PP2A, reverses this Akt inhibition (175). Since CTLA-4 

and CD28 are structurally homologous and bind to shared ligands (174), it is 

likely PP2A that binds to similar motifs on CD28, however, this has not been 

experimentally verified.  Although the exact binding motif is not determined, an in 

vitro kinase assay with lck and CD28 showed that the addition of PP2A removed 

lck-induced CD28 phosphorylation, indicating that PP2A may have a role in 

directly reversing CD28 ITAM activation (174) and inhibiting downstream 

signaling.  

 

Tumor Immunology 

 Tumor immune surveillance (elimination). Immunosurveillance of 

cancer cells was first postulated by Dr. Burnet in the 1970s, and is now a well-

established principle thought to contribute not only to the quantity, but also the 

quality, or immunogenicity, of a tumor during development (176-178). Dr. Robert 

Schreiber and colleagues first coined the 3 steps contributing to tumor 

immunoediting (elimination, equilibrium and escape) back in the early 2000s, and 
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the importance of proper immune regulation in cancer management continues to 

be experimentally supported today (179, 180). An active and healthy immune 

system is critical for managing tumor development at the sub-clinical level, 

evidenced through increased rate of spontaneous tumor generation in 

immunodeficient mice (177, 181), and in immune-suppressed patients. 

Immunosuppressed patients due to organ or bone marrow transplantation have a 

3-100 fold increase in their susceptibility to develop certain malignancies (182, 

183), including heart transplant patients who have shown a 25 times higher 

prevalence of lung tumors compared to the general population (184). Since the 

1990s, there have been several studies demonstrating better prognosis and 

longer survival in patients who had evidence of tumor infiltrating lymphocytes 

(TILs) within solid tumor biopsies, indicating that the immune system plays a key 

role in eliminating tumors at the sub-clinical and clinically detectable level (185-

189).  

Tumor immune equilibrium. Mechanisms regulating innate and adaptive 

immune responses are carefully orchestrated to detect and remove infected, 

transformed, or erratically growing cells within the body on a daily basis, 

preventing tumor formation. Tumors eventually overcome immune detection 

through an equilibrium stage where the immune system actually “edits” tumors 

and selects cells that can evade immune detection. Tumor immune-editing has 

been demonstrated through several mouse tumor models. Transplantation of an 

immunogenic tumor through multiple rounds of immune-responsive hosts lead to 

reduced immunogenicity, and the eventual inability to eliminate the tumor (190, 
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191). The immune system is able to eliminate only those cells that it can 

recognize and kill, leaving behind tumor cells that have reduced immunogenicity 

and a survival advantage facilitated through inherent genetic instability within the 

tumor environment (192).  Immune editing is also evidenced through tumors that 

have been grown in an immunocompromised host (i.e. RAG-/-) that are rejected 

fairly easily when removed and transplanted into an immune-efficient host. This 

immunoediting process occurs prior to any clinically detectable lesion in humans, 

as the immune system is able to eliminate a majority of the abnormal cells, and 

the length of time that it takes for the tumor to eventually overcome the innate 

and adaptive immune systems is not known. 

 Tumor immune escape.  

Mechanisms of escape. During the equilibrium stage, the immune 

system eventually becomes overwhelmed, or evaded, by the malignant cells and 

the tumor progresses into a clinically detectable lesion. At this point, the point at 

which clinicians and researchers are trying to eradicate the lesion, the tumor has 

already acquired several advantages to suppress the immune system and 

survive. Tumors can induce peripheral T-cell tolerance through antigen non-

responsiveness (lack of co-stimulation) or skewing of the T-cell functional 

response towards a non-tumor cytotoxic phenotype (i.e.: Th2 or Th17) (193, 

194).  

Tumors have several mechanisms of inducing anergy/non-responsiveness 

and evading immune detection (Figure 4). These mechanisms include down-
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regulation of class I human leukocyte antigen (HLA) molecules that allow for the 

detection of tumor associated antigens (195), increased recruitment of immature 

myeloid cells, called myeloid-derived suppressor cells (MDSCs), into the tumor 

environment (196, 197), increased recruitment of regulatory T-cells into the tumor 

(198), and various alterations in T-cell co-stimulatory/co-inhibitory molecules 

expressed on the tumor. One important mechanism of escaping T-cell 

recognition is through down-regulation of co-stimulatory molecules, leading to 

anergy or non-responsiveness towards the tumor cells (as reviewed in (199)). 

Lack of co-stimulation through B7-1 molecule even in the presence of low affinity 

antigenic stimulation (similar to that seen in the tumor environment) can also 

render CD8+ T-cells susceptible to PD-1/PDL-1 inhibition and suppress 

activation (200). Up-regulation of T-cell co-inhibitory molecules that shut down T-

cell responsiveness and potentially increase apoptosis of tumor-reactive T-cells 

is another major mechanism of escaping immune recognition (201-203). B7-H1 

(PDL-1) over expression is associated with tumor grade and staging in a variety 

of solid tumors and several hematologic malignancies (204-208), including 

myelodysplastic syndrome (209), and expression of B7-H2, a ligand for CTLA-4, 

is associated with poor prognosis in acute myeloid leukemia (AML) (210). 

Therefore, these co-stimulatory and co-inhibitory molecules have become 

attractive immunotherapeutic targets from both the T-cell and tumor cell vantage 

point. 
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Figure 4. Mechanisms of tumor immune escape. Tumors utilize a variety of 
mechanisms to evade detection by the immune system. Tumors recruit 
regulatory T-cells, as well as immature myeloid cell (MDSCs) that suppress T-cell 
activation through a variety of mechanisms. Tumors also are able to down-
regulate co-stimulatory molecules (B7-1) and HLA-I to evade antigen 
presentation, while up-regulating co-inhibitory molecules and Fas to induce T-cell 
suppression and apoptosis. 

 

Immunotherapeutics. The importance of proper CD28 activation 

and the role of PD-1 and CTLA-4 activation in shutting down the immune 

response have translated into the development of several drugs targeting these 

pathways in cancer. As described above, tumor cells up-regulate co-inhibitory 

ligands like B7-H1 and B7-H2, which bind to and activate the T-cell inhibitory 

receptors CTLA-4 and PD-1.  Recently, the use of a human anti-CTLA-4 

monoclonal antibody (ipilimumab) has been approved for the treatment of 



www.manaraa.com

28 

metastatic melanoma and is shown to increase tumor rejection and prolong 

survival, where it disrupts the CTLA-4/B7 interaction and increases CD4+ and 

CD8+ recruitment to the tumor environment (211-213). The blockade of PD-1 

signaling also improves T-cell function, and the use of anti-PD-1 antibodies are 

currently in development and clinical testing in several hematologic and solid 

malignancies (214, 215).  

Not only are monoclonal antibodies being developed to block the binding 

of inhibitory molecules to ligands on T-cells, but increasing the binding of co-

stimulatory molecules has also been utilized. Cellular vaccine immunotherapies 

that over-express the B7-1 molecule have been tested and demonstrated some 

clinical efficacy in melanoma and non-small cell lung cancer (NSCLC) (216, 217) 

but this method does not account for increased expression of inhibitory 

molecules that dampen the activation signal. The success of these therapies 

support the idea that greater immunotherapy efficacy may be achieved with 

combination therapies, utilizing anti-inhibitory molecule antibodies, with co-

stimulatory molecule engagement to produce a robust anti-tumor immune 

response, overcoming tumor-immune tolerance.   

 

Lenalidomide and the immunomodulatory drugs (IMiDs®) 

 Thalidomide and the generation of IMiDs®. Lenalidomide (Revlimid, 

CC-5013) is a second-generation synthetic derivative of glutamic acid and 

thalidomide analogue with anti-angiogenic, anti-tumorigenic, and 
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immunomodulating activity. Thalidomide was initially discovered in the 1950s and 

was approved in Europe and Asia from 1957-1961 for distribution to pregnant 

women as an antiemetic drug, until it was banned because of an association with 

teratogenicity, including phocomelia, and peripheral neurophathy. The birth of 

thousands of children, dubbed “thalidomide babies” with severe limb 

malformations became popularly known as the “thalidomide tragedy”, and black-

boxed usage of the drug worldwide. There are multiple proposed mechanisms for 

thalidomide-induced teratogenicity, some stemming from proposed differences in 

targets or off-target effects due to the chirality of the molecule. It was thought that 

the S-enantiomer of thalidomide induced teratogenic effects, whereas the R-

enantiomer was non-toxic (218), leading to the idea that purification of 

enantiomer-specific molecules might have prevented the thalidomide tragedy. It 

was later discovered that thalidomide is able to interconvert between the R and S 

forms in vivo, suggesting that purification of a specific enantiomer would not have 

prevented this tragedy, and could not be used therapeutically in pregnant women 

(219).  

Therapeutic usage of thalidomide was revitalized in the mid-1960s by Dr. 

J. Sheskin in Jerusalem who administered thalidomide as a sedative to a 

critically ill male patient with erythema nodosum leprosum (ENL), an extremely 

painful inflammatory complication of lepromatous leprosy (220, 221). 

Surprisingly, thalidomide healed the inflammatory skin lesions and overall 

disease burden of the patient. The ability of thalidomide to inhibit inflammation 

through down-regulation of TNF-alpha was ultimately discovered as the 
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mechanism for thalidomide efficacy and immune modulating effects in this 

disease (222, 223). The efficacy of thalidomide demonstrated through usage in 

ENL ultimately revitalized the drug, and stimulated development of several 

structurally-related compounds with anti-inflammatory activity for the treatment of 

autoimmune disorders such as Rheumatoid Arthritis (RA) (224), systemic lupus 

erthymatosus (SLE) (225), and Behcet’s disease (226).  

Creation of synthetic modifications to the thalidomide backbone led to the 

discovery of lenalidomide and pomalidomide, which demonstrate 500-fold greater 

immunomodulatory potency and safer side effect profile compared to the parent 

drug (227, 228) (Figure 5). Not only are lenalidomide and pomalidomide more 

potent immune-modulating drugs, but these agents are better tolerated (229).  

 

 

 
 
 
 
 
 
 
 
 
 
Figure 5. Structures of the immunomodulatory drugs. Thalidomide, 
C13H10N2O4, (thal, top), lenalidomide, C13H13N3O3, (len, bottom left), and 
pomalidomide, C13H11N3O4, (pom, bottom right) collectively make up a class of 
small molecules called immunomodulatory drugs or “IMiDs”. The parent 
compound, thalidomide, was altered to generate len and pom. Light red boxes 
highlight an amine group added to the fourth carbon of the phthaloyl ring in the 
thal-derivatives. Light blue boxes indicate the carbonyl of the 4-amino-substituted 
phthaloyl ring shared by pom and thal. * indicates chiral carbon on all molecules. 
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Lenalidomide in Myelodysplastic Syndrome. Lenalidomide was first 

investigated in MDS because of its potent anti-TNF-α activity, and TNF is thought 

to contribute to disease pathogenesis in these patients. Lenalidomide is 

approved by the U.S. Food and Drug Administration for the treatment of low- or 

intermediate-1 risk and del(5q) Myelodysplastic Syndrome (MDS), and was the 

first karyotype-specific drug of its kind (230, 231). MDS is a heterogeneous 

grouping of bone marrow failure disorders characterized by ineffective 

hematopoiesis leading to various cytopenias, dysplasia in one or more myeloid 

lineages, and an increased risk of transformation to acute myeloid leukemia 

(AML). The International Prognostic Scoring System (IPSS) is used to stratify 

MDS into several risk categories (low, intermediate-1, intermediate-2, high) 

based upon cytologic features, blast counts, the number of cytopenias, and 

cytogenetics (232). These risk categories have distinct survival patterns and 

increased risk for AML progression as you go from low to high risk MDS. MDS 

with an interstitial deletion on the long arm of chromosome 5 (del(5q)) is one of 

the most common MDS chromosomal abnormalities that imparts a unique lower 

risk phenotype (233). Hematopoetic stem cell transplantation (HCT) is the only 

known curative treatment for MDS, but several other treatments such as 5-aza 

(234), anti-thymocyte globulin (ATG) (235), and lenalidomide have had great 

success in extending patient survival.  Described herein are known effects of 

lenalidomide in mediating erythropoiesis and disease management. 

Effect on hematopoiesis. Anemia and red blood cell transfusion 

dependence ultimately leads to mortality in a significant portion of low, and high-
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risk MDS patients. Lenalidomide was able to induce 63% transfusion 

independence in low-risk MDS patients, and 83% transfusion independence with 

a 75% complete response rate in the del(5q) subtype (230). There are many 

postulated mechanisms for lenalidomide’s efficacy in MDS, namely associated 

with its ability to augment erythropoiesis and induce apoptosis within the myeloid 

clone. Reversal of anemia in these patients has potentially been attributed to 

expansion of hematopoietic progenitors and erythroid bursts (236, 237), as 

demonstrated through increases in these populations after treatment of normal 

CD34+ bone marrow progenitors with lenalidomide. An erythroid gene signature 

of responsiveness to lenalidomide in non-del(5q) MDS also indicated that 

patients who respond to lenalidomide therapy have decreased expression of 

erythroid differentiation genes that are enhanced through lenalidomide treatment, 

ultimately enhancing erythropoietin (EPO) signaling and reducing anemia (238). 

RPS14 and MDM2. RPS14 is among 44 genes within the CDR of 

MDS 5q-syndrome that is involved in the impaired erythropoiesis and macrocytic 

anemia phenotype. It was discovered through an a RNAi screen that the specific 

downregulation of RPS14 alone was able to promote the erythroid phenotype 

seen in del(5q) MDS patients, and this data along with the finding that del(5q) 

patients express half of the amount of RPS14 found in non-del(5q) MDS patients, 

suggests that haploinsufficiency of this gene alone is sufficient to induce impaired 

erythropoiesis (239, 240). Loss of RPS14 expression has been shown to lead to 

increased p53 expression in these patients, subsequently increasing expression 

of p53 target genes like p21 and other cell cycle regulators that prohibit 
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movement through the cell cycle and induce apoptosis (241). Loss of, or 

mutations within, ribosomal processing proteins leads to nucleolar stress, and 

sequestering and inducing degradation of murine double-minute protein 2 

(MDM2), allowing for p53 stabilization (242).  Recently, Wei et al. demonstrated 

that lenalidomide can promote p53 degradation in erythroid progenitors through 

inhibition of the auto-ubiquitination of MDM2 (243). MDM2 auto-ubiquitination 

prevents its binding to p53. Free and active MDM2 usually binds to, an poly-

ubiquitinates p53, targeting p53 for proteosomal degradation and preventing it 

from halting the cell cycle progression. MDS patients with del(5q) were shown to 

have inherently increased p53 levels in the bone marrow that were then 

decreased after lenalidomide treatment. The upregulation of p53 expression after 

lenalidomide failure also suggests p53 induction could be involved in resistance 

to lenalidomide (243).  

PP2Acα and Cdc25c. Lenalidomide has been shown to not only 

reverse apoptosis within the erythroid compartment, but also directly induce 

apoptosis of the myeloid clone in del(5q) MDS (244, 245), likely through inhibition 

of the haplo-insufficient phosphatases PP2Acα and Cdc25c located also within 

the CDR (246). PP2A and Cdc25c are key proteins that regulate the G2-M cell 

cycle checkpoint. Through direct or indirect mechanisms, a decrease in PP2Ac 

and Cdc25c gene dosage allows for lenalidomide-induced inhibition of these 

phosphatases, preventing cell cycle progression and inducing apoptosis (246). It 

has also been demonstrated that lenalidomide upregulates the expression of the 

tumor suppressor SPARC (247), suggesting another means by which 
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lenalidomide induces apoptosis of the dysplastic myeloid clones in MDS, 

although the target in this pathway has not yet been determined.   

  Cereblon. Recently, a direct target of IMiD-binding has been 

identified.  Although the potential function of this protein in MDS is not clear, 

cereblon (CRBN) is a 51kDa protein that mediates thalidomide teratogenicity in 

humans (248). Ito and colleagues utilized thalidomide-conjugated beads in 

competitive binding assays to demonstrate that CRBN directly binds to 

thalidomide, and can induce teratogenic effects in zebrafish and chicken 

embryos, similar to those seen in humans. CRBN is a ubiquitously expressed 

highly conserved protein that was first discovered as an ionic channel regulator in 

the brain involved in memory and learning (249, 250). CRBN binds to calcium-

activated potassium channels in the brain (250, 251), chloride channels in the 

retina (252), and AMP kinase in eukaryotic cells (253). The homozygous R419X 

nonsense mutation in CRBN deletes the C-terminus region and is associated 

with familial mild mental retardation (254). Forebrain-specific CRBN knockout 

mice also demonstrate memory and learning deficits (255). In vivo, CRBN forms 

a functional E3 ubiquitin ligase complex with DNA damage binding protein-1 

(DDB1), Cul4A and Roc1 that bind to and poly-ubiquitinate target proteins, 

targeting them for proteosomal degradation. 

 Thalidomide was shown by Ito et al. to not necessarily disrupt formation of 

the CRBN-DDB1-Cul4A complex, but inhibit its inherent auto-ubiquitination and 

E3 ligase activity, disrupting downstream pathways involved in physical and 

mental development (248). Although the role of CRBN in thalidomide-induced 
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teratogenicity has been established, the role of CRBN in hematologic 

malignancies and immune cells is not completely clear. Decreased expression of 

CRBN was recently shown in two separate studies to be associated with 

resistance to lenalidomide- and pomalidomide-induced apoptosis in multiple 

myeloma cell lines (256, 257). Lopez-Girona et al. also demonstrated that 

knockdown of CRBN in primary T-cells reverses the ability of lenalidomide and 

pomalidomide to increase IL-2 and TNF-α production (257), implicating a 

potential role for the protein in immune modulating activity. Although these data 

support that CRBN is a lenalidomide target, the role of CRBN in proliferation and 

function of both hematologic cells and immune cells is not understood. 

Examination of the natural targets of CRBN in other cells besides the brain will 

help us to better understand how CRBN is affecting responses to lenalidomide, 

and potentially lead to generation of other compounds to counteract acquired 

lenalidomide resistance.   

Immune-modulating effects. The immunomodulating effects of 

lenalidomide are also thought to contribute to erythroid responsiveness in MDS, 

where it acts to alter immune homeostasis and modulate inflammation within the 

bone marrow microenvironment. The ability of thalidomide to down-regulate 

monocyte-derived TNF-α production originally explained the potent anti-

inflammatory properties of the drug in SLE and other auto-immune disorders 

(222). Enhanced TNF-α secretion within the bone marrow microenvironment has 

been implicated in erythroid apoptosis in MDS, which is down-regulated through 

lenalidomide treatment (258). Increased expression of other inflammatory 
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cytokines, IL-6, IL-8, and IL-32, as a result of increased TNF-α levels are also 

implicated in bone marrow failure, and are decreased after lenalidomide 

treatment (259).  

Early reports of the presence of bone marrow lymphoid aggregates 

in lenalidomide-responsive MDS patients also implicated immune modulation in 

hematological responses to this agent (231). Although the alteration of T-cell 

homeostatic regulation in MM by lenalidomide has been described, the direct 

effects on the lymphoid compartment in MDS patients, and the relationship to 

response, has not been studied (260). Neuber and colleagues show that 

lenalidomide can enhance antigen-specific activity of T-cells, as well as increase 

conversion of naïve antigen specific T-cells to memory cells. A similar increase in 

central memory T-cells was observed by Noonan et al (261) in MM patients that 

received lenalidomide in combination with the pneumococcal 7-valent conjugated 

vaccine (PCV) to establish the principle of vaccine combination therapy.  

Interestingly, the increase in PCV-specific antibody and cellular responses were 

specific to the vaccination schedule favoring administration of lenalidomide prior 

to PCV vaccine.  Another hematologic malignancy, B-Chronic Lymphocytic 

Leukemia (B-CLL), is associated with dysfunctional T-cell activity (262, 263) with 

defects in actin polarization at the immune synapse (264). Treatment with 

lenalidomide in CLL restored IL-2 and IFN-γ secreting CD4+ and CD8+ T-cells to 

normal levels (253) and reversed the suppressive signals blocking lytic synapse 

formation (264). One of the aims of this dissertation was to examine the immune 

compartment within MDS patients to see if lenalidomide can alter immune 
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homeostasis and cytokine production in vivo to further elucidate the role of 

increased immune activation in the treatment of MDS.  

Immunomodulatory capacity of lenalidomide in other hematologic 

malignancies. Lenalidomide is not only approved for the treatment of MDS, but 

has potent immune-modulating effects in a variety of other hematologic 

malignancies. Lenalidomide alone or in combination therapy enhances the co-

stimulatory capacity of T-cells and antibody-dependent cell-mediated cytotoxicity 

(ADCC) by NK cells in diseases such as MM, B-CLL, and Non-Hodgkin’s 

Lymphoma (NHL), although the direct molecular targets have yet to be 

elucidated. The known effect of lenalidomide in promoting immune detection and 

eradication of these diseases by lymphocytes is described in this section. 

Enhanced T-cell co-stimulation and signaling. Lenalidomide is 

able to enhance the proliferative and functional capacity of T-cells, which 

augments immune activity through a variety of mechanisms. Thalidomide was 

first shown to augment T-cell proliferation and cytokine production in the absence 

of co-stimulatory molecules without direct mitogenic activity (265). When a T-cell 

encounters cognate tumor antigens presented by antigen presenting cell (APCs), 

there is an increase in a variety of co-stimulatory molecules, most importantly 

CD28, that enables a fully competent signal response by T-cells (266). As 

described above, the absence of CD28-APC interaction (Signal 2) in the 

presence of T-cell Receptor ligation (Signal 1) leads to inactivation or anergy of 

naïve T-cells. Thalidomide, and to a greater extent lenalidomide, induces IL-2, 

IFN-γ, and TNF-α secretion (265) in the absence of CD28 stimulation, suggesting 
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that the drug somehow activates the co-stimulatory-dependent signaling cascade 

initiated by Signal 2 (267).  

Both Signal 1 (TCR) and Signal 2 (co-stimulation) are necessary for IL-2 

production leading to the hypothesis that lenalidomide and the other IMiDs 

function somewhere within this co-stimulatory pathway (129, 268, 269) (Figure 

6).  LeBlanc et al. showed that lenalidomide acts to increase tyrosine-

phosphorylation in the intracellular domain of the CD28 receptor in the absence 

of co-stimulatory molecules (270).  Although it is not known if lenalidomide acts 

directly to induce phosphorylation, the presence of downstream signaling events 

after treatment such as NF-κB p65 translocation to the nucleus, and cytokine 

production, suggests that this pathway may be important for lenalidomide’s 

immunomodulatory effect (270). Others have shown that the activation of PKC-ζ 

and NFAT-2 are important mediators of cytokine production after IMiD treatment 

(271). However, a conflicting report showed that PKC-θ activity and AP-1 DNA 

binding was increased, without an increase in NF-κB, OCT-1, and NFAT 

transcription factor binding, which adds to the controversy about lenalidomide’s 

T-cell-associated molecular mechanism of action (272, 273) (Figure 6). These 

controversial results, however, may be attributed to the methods used for T-cell 

stimulation, namely TCR stimulation versus calcium channel activation, 

respectively. Görgün et al. showed that lenalidomide and pomalidomide reduce 

Suppressor of Cytokine Signaling-1 (SOCS1) expression in T-cells, which is an 

important negative regulator of cytokine signaling (274). Even when treated with 

IFN-γ to induce SOCS1 expression, the drug was capable of blocking this 
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inhibitory response and potentiating TCR/anti-CD28 co-stimulation in effector T-

cells (274). Although reduction in a suppressive signal may be important, this 

would not be expected to generate unique responses, such as IL-2, that 

specifically replace the need for a co-stimulatory signal.   

Effects on Tregs. In addition to the activation of effector T-cells, 

there is a valid concern about the potential effect of IMiDs on regulatory T (Treg) 

cells that may deter anti-tumor immunity by suppressing immunosurveillance 

(177, 275). In this regard, lenalidomide and pomalidomide were shown to inhibit 

the expansion and function of Tregs by downregulating the expression of FOXP3 

(276, 277). The preferential augmentation of CD8+ cytotoxic T-cells and 

inhibition of regulatory T-cells makes this drug a very interesting and 

potentially valuable therapeutic candidate to augment immunotherapy 

responses in cancer patients.  
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Figure 6. Schematic of various T-cell signaling pathways up-regulated after 
lenalidomide treatment. Lenalidomide is known to have no direct mitogenic 
activity, therefore it cannot induce proliferation upon TCR ligation alone. Upon 
TCR ligation, lenalidomide (LEN) increases phosphorylation of tyrosines within 
the intracytoplasmic tail of CD28, through an unknown mechanism, increasing 
downstream signaling and activation of PKC-θ, MAPK, and potentially other 
signaling pathways. It is controversial which transcription factors are ultimately 
increased upon lenalidomide treatment (indicated by a question mark). Up-
regulation of these pathways potentially reverse T-cell defects, aid in breaking 
tolerance, and leads to greater CD4+ T-cell help to DCs, NK cells, and CD8+ T-
cells, augmenting eradication of the tumor cells. 

 

Increased Natural Killer cell recognition and cytotoxicity of 

leukemia cells. In addition to the potentiating effect on T and B cells, 

immunomodulatory drugs have a profound effect on the innate immune 

response, namely Natural Killer (NK) cells. NK cells are an important component 

of the innate immune system where they play major roles in tumor rejection, viral 

clearance and DC regulation (278-280). Thalidomide was shown to enhance the 

cytotoxic effects of NK cells, as well as increase their cell numbers in MM 

patients (281). This enhanced killing effect requires cytokine support from 

accessory lymphocytes, like T-cells, as there is no measurable increase in direct 

killing of the K562 human leukemia cell line by purified NK cells in the presence 

of high doses of lenalidomide or pomalidomide (282). PBMCs depleted of NK 

cells were not able to kill K562 at all, nor were PBMCs in a transwell experiment, 

suggesting that NK cells and their contact with the tumor cell is a necessary 

component of lenalidomide-mediated tumor cell apoptosis (282). Support from T-

cells, in the form of IL-2 secretion, is extremely important for NK cell mediated 
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cytotoxicity of MM after lenalidomide treatment (271). Although the combination 

of lenalidomide with dexamethasone has been shown to have significant activity, 

IL-2 production was abrogated in vivo when MM patients received this 

combination simultaneously (283). Hsu et al. demonstrated that dexamethasone 

treatment suppressed IL-2 production from CD4+ helper T-cells, impaired NK 

cell-mediated cytotoxicity and countered the immunostimulatory effects of 

lenalidomide in MM patients.  Pharmocodynamic studies may maximize the 

efficacy of this combination therapy in MM.  

There are multiple mechanisms postulated for increased NK cell killing in 

the various disease settings. Both pomalidomide and lenalidomide upregulate the 

expression of CD56, which normally decreases NK killing capacity, but in this 

setting had no detriment to NK cells (282). Carbone et al. showed that the 

expression of natural cytotoxic receptors (NCR) and NK receptor member D of 

the lectin-like receptor family (NKG2D) are necessary for myeloma cell 

recognition (284) and NKG2D blockade abrogated the effect of lenalidomide in 

solid tumors (285). It was recently shown by Benson et al. that the addition of a 

murine anti-inhibitory killer immunoglobulin receptor (KIR) antibody with 

concurrent lenalidomide therapy mediated rejection of lenalidomide-resistant 

tumors in a mouse model (286). This is similar to their IPH2101 human anti-

inhibitory KIR antibody that also increases in vitro NK cell cytotoxicity specifically 

against MM cell targets, but not normal cells,  suggesting that clinical testing in 

combination with lenalidomide is warranted (286).  
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A schematic of the various mechanisms of NK cell-mediated killing in MM 

after lenalidomide treatment in combination with various monoclonal antibodies is 

shown in (Figure 7). MM cells, like most tumor cells, express the programmed 

death receptor-1 ligand (PD-L1) which down-regulates the immune response 

against malignant cells through programmed death receptor-1 interactions on T-

cells (287, 288). Recently, it was shown that NK cells from MM patients express 

PD-1, and the PD-1/PD-L1 interaction decreased NK cell-mediated killing (289). 

A novel anti-PD-1 antibody, CT-011, can increase NK cell-mediated killing of 

autologous MM cells from patients, without effecting normal cells (289). This new 

monoclonal therapy, along with lenalidomide’s action of decreasing PD-L1 on 

MM cells, may improve response rates to this combination therapy.  
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Figure 7. Lenalidomide alone, or in combination with a variety of 
therapeutic monoclonal antibodies, increases NK-cell mediated killing of 
multiple myeloma cells. Lenalidomide (LEN) up-regulates Fas expression and 
co-stimulatory molecules on MM cells leading to greater Fas-mediated apoptosis. 
Len has also been shown to augment the ADCC effect of various monoclonal 
antibodies like Rituximab (anti-CD20), GA-101 (glycoengineered anti-CD20), and 
CT-011 (anti-PDL-1). CT-011 blocks PD-1 ligand on the MM cells, interfering with 
binding to PD-1 and inhibiting NK cell activity.  IPH2101 is an anti-inhibitory KIR 
that has been shown in combination with len to increase NK-cell killing as well, 
as blocking the inhibitory signals allows for NK activation and detection of the 
tumor cells. 

 

Enhanced NK-cell ADCC by lenalidomide with combination antibody 

therapy. Enhanced antibody dependent cytotoxicity (ADCC) by NK cells is also 

an extremely important mechanism in IMiD function in CLL, MM, and even solid 

tumors (271, 285, 290). ADCC is a process where antibodies bind to their ligand 

antigens on target cells, which then bind to FcR-γ receptors on NK cells, and 

trigger cell lysis through perforin and granzyme-dependent pathways (291). 

Lenalidomide- and pomalidomide-induced killing via NK cells correlates with an 

increase in Fas Ligand (FasL) and granzyme B expression in NK cells, leading to 

increased ADCC in multiple tumor settings (290). Thalidomide plus rituximab 

(RTX), an anti-CD20 monoclonal antibody commonly used in CLL, was found to 

increase complete response rates in relapsed and refractory MCL patients (292). 

Further study of the mechanism showed that the drug-antibody combination 

increased growth arrest of MCL cell lines, as well as primary cells, compared to 

RTX alone (293). Mechanistically, they discovered that lenalidomide enhanced 

CD20-mAb-dependent apoptosis of the MCL cells by up-regulating activation of 

caspase-3, -8, -9 and the cleavage of PARP, as well as enhanced ADCC by 



www.manaraa.com

44 

CD16 induction on NK cells (293). An increase in NK-mediated ADCC is also 

implicated in the success of RTX and lenalidomide combination therapy in CLL 

and NHL, although unproven in vivo (294, 295). Ofatumumab, another anti-CD20 

monoclonal antibody, binds to a different epitope and induces greater 

complement dependent cytotoxicity and has shown evidence of activity in 

fludarabine and rituximab-refractory CLL (296, 297). Another CD20 mAb, the 

glycoengineered GA-101 antibody, induces greater ADCC in vitro than RTX, and 

has shown promising pre-clinical activity in animal models of NHL and B-CLL 

(298-302). Lenalidomide therapy is currently being tested with ofatumumab (303) 

and elotuzumab (304) in advanced, relapsed or refractory patients, and has 

shown therapeutic potential. Therefore, concurrent lenalidomide therapy with 

these antibodies may prove beneficial in refractory patients to augment anti-

tumorigenic activity through NK cell potentiating effects.  

As an immunomodulatory agent in solid tumors, lenaliomide has been 

used to reverse tolerance to tumor antigens (305, 306).  As such, lenalidomide 

may prove beneficial as an adjuvant to vaccine therapies.  Wu et al. 

demonstrated that lenalidomide enhances NK cell killing in a variety of solid 

tumor cell lines (breast, colorectal cancer, ovary, head and neck, lung cancer, 

bone sarcoma) treated with cetuximab or trastuzumab (285). The treatment of 

hematologic and solid tumors with specific monoclonal antibody therapy 

concurrently with lenalidomide could potently increase NK cell-mediated tumor 

lysis and enhance response rates. Lenalidomide induces NK cells to produce 

granulocyte-macrophage colony-stimulating factor (GM-CSF), TNF-α, and 
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various immune recruiting chemokines including RANTES, IL-8, MCP-1, and 

MIP-1α/β in response to antibody coated tumor cell lines, which contributes to a 

more effective immune response (285). The IMiDs enhance immunosurveillance 

in solid and liquid tumor settings through recruiting and activating T and NK cells 

to suppress malignant growth.  
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CHAPTER 2 
 

Reversal of T-cell Tolerance in Myelodysplastic Syndrome through 
Lenalidomide Immune Modulation 

 
A note to the reader: This work has been previously published in the journal 
Leukemia, McDaniel et al. 2012. (307) and has been reproduced here with 
permission from the publisher. 
 
Introduction 

Myelodysplastic syndromes (MDS) represent a spectrum of senescence-

dependent, hematopoietic stem cell disorders (308).  The classical clinical 

manifestations include dysplastic cytological features, ineffective hematopoiesis, 

and a propensity for transformation into acute myeloid leukemia (AML) (309-

311). The prognosis varies, but recent FDA approved therapies, such as 5-

azacytidine and the thalidomide analog lenalidomide, have significantly altered 

the natural history of disease (231, 312). In patients with non-del(5q) MDS, 

lenalidomide (Revlimid ®, Celgene Inc.) (230)  improves hematopoiesis in a 

subset of patients in the absence of the clonal suppression observed in del(5q) 

MDS (313). Using micro-array gene expression analysis on bone marrow 

specimens from MDS patients treated with lenalidomide, Ebert et al. found that 

responsive patients display reduced expression of genes involved in erythroid 

differentiation (238).  Moreover, treatment with lenalidomide restored 

differentiation potential accompanied by up-regulation of the natively suppressed 



www.manaraa.com

47 

erythroid gene signature, indicating that lenalidomide may be effective in a select 

subgroup of anemic patients with non-del5q MDS (238).  

In addition to its effects on erythropoiesis, lenalidomide is a potent 

immunomodulatory drug (IMiD®). All thalidomide derivatives suppress 

inflammatory cytokines produced by dendritic cells and activated macrophages, 

as well as enhance T and NK-cell proliferation and function (265, 270, 281). 

Although the direct erythroid-specific activity of lenalidomide may relate to effects 

on erythropoietin (EPO) receptor signaling, little is known about the effect of this 

drug and the mechanism of action in vitro and in vivo on the T-cell compartment 

(314).  Immune dysregulation plays a critical pathophysiological role in the 

pathogenesis of MDS (315, 316), and a subset of low-risk patients with impaired 

hematopoiesis experience hematologic improvement after immunosuppressive 

therapy with cyclosporine A (CsA) and anti-thymocyte globulin (ATG) (317-319). 

T-cells generally lack the del(5q) chromosomal abnormality and are believed to 

be derived from the normal lymphoid progenitor compartment.  Therefore, the 

immune dysregulation in MDS may be driven by activation against the abnormal 

myeloid clone. The hematologic remitting activity of lenalidomide in patients with 

del(5q) MDS is associated with an increase in bone marrow lymphoid 

aggregates, suggesting that activation of these cells may play a role in the 

clinical response (231). In an effort to understand lenalidomide’s 

immunomodulatory activity, and to study the relationship between T-cell function 

and hematologic response in MDS patients, we evaluated T-cell activity before 

and after lenalidomide treatment, and correlated changes in immune parameters 
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with hematologic improvement. The results suggest that lenalidomide-mediated 

immunomodulatory function may contribute to hematologic improvement in MDS 

lower risk patients, and sheds light on the in vivo mechanism of action. 

 

Results 

Characteristics and hematologic response of lenalidomide-treated 

MDS cohort. One hundred patients with pathologically defined MDS were 

consented at Moffitt Cancer Center to evaluate immune responses.  Thirteen of 

these were lower-risk, treated with lenalidomide, and had samples collected 

before and after treatment. Blood samples from an additional 5 patients with only 

lenalidomide pre-treatment samples available were used for in vitro treatment 

with lenalidomide, but were not included in the analysis to evaluate the 

relationship between T-cell response and hematologic response.  Patient 

characteristics and hematologic response to lenalidomide are shown in Table 1. 

Seven patients exhibited a major erythroid response out of 13 (53.8%), as 

determined by international working group 2000 criteria.  The median age of the 

group was 74 (range 49 – 83) and the median age of the responders was 72 

years (mean 68.3, range 53 – 79 years), which did not differ from the non-

responders (median 78.5, mean 73.5, range 49 - 83) (p = 0.386). Two patients 

with del(5q) were treated, one with del(2)(q11.2), one with complex 

abnormalities, and the remaining patients had a normal karyotype (n=9).  All 

patients, including the patients with del(5q), were treated for severe anemia and 
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the responsive patients demonstrated a sustained increase in hemoglobin for at 

least 4 weeks duration. Patients with del(5q) also had a complete cytogenetic 

response with elimination of the clonal myeloid cells. The mean hemoglobin for 

the group was 9.1 g/dL, absolute neutrophil count 3.22 x 109 cells/L, and platelet 

count was required to be greater than 50,000 cells/L for eligibility on the clinical 

trial.  There was no difference between responders and non-responders with 

regard to international prognostic score (IPSS) or World Health Organization 

(WHO) classification.   

 

MDS patient T-cells were inherently tolerant to in vitro stimulation. To 

evaluate the proliferative response, the percentage of BrdU positive T-cells after 

anti-CD3 antibody-stimulation was compared in healthy donors and MDS patient 

PBMCs (n=13). Figure 8A-B shows that the percentage of proliferating T-cells 
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(both CD4 and CD8) after stimulation was significantly less in samples from 

patients (n=13, 6.91%±3.36) compared to controls (n=27, 17.91%±4.75) 

(p<0.0001 for both cell types).  The difference in function was age-independent, 

as shown in Figures 8A (CD4 Healthy Donor Spearman r=0.009, MDS pt. 

r=0.341; both p=ns) and 8B (CD8 Healthy Donor Spearman r=-0.212, MDS pt. 

r=0.316; both p=ns), indicating that MDS T-cells are anergic, or hypo-responsive, 

to T-cell stimulation. 

Incompletely tolerant T-cells can potentially have their proliferative defects 

rescued by high doses of exogenous interleukin-2 (IL-2) (320).  We therefore 

examined the TCR-induced proliferative response of healthy donor and patient T-

cells in the presence of anti-CD3 stimulation and anti-CD3 stimulation with 100 

U/ml recombinant IL-2. MDS patient T-cells (both CD4 and CD8) had a 57% 

recovery of proliferation with the addition of IL-2 in comparison to the normal T-

cells stimulated with CD3 alone, but the proliferative capacity was still 

significantly below normal levels (data not shown). Also, the proliferation of T-

cells in healthy donors and patient T-cells increased with the addition of IL-2, but 

the difference between groups remained unchanged (data not shown). This 

indicates that T-cells in MDS patients are anergic and only partially responsive to 

IL-2. 
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Figure 8. T-cells from MDS patients are inherently anergic. Proliferation of T-
cells was measured by bromodeoxyuridine (BrdU) incorporation after 2-day 
culture in the presence of immobilized anti-CD3 antibody (10 μg/ml). The 
percentage of BrdU positive cells was determined in both CD4+ (A) and CD8+ T-
cells (B) from 13 MDS patients (MDS) prior to lenalidomide treatment and 28 
healthy donors (Controls). A Spearman Correlation was used to determine 
correlation of age and % BrdU incorporation, with insignificant p values (A and B, 
left). A Wilcoxon rank sum test was used to compare the mean proliferation 
between Healthy Donor and MDS patient samples (A and B, right). P-values are 
shown. 9 patient samples pre-treatment were used to evaluate capacity to 
overcome proliferation defects after stimulation with both immobilized anti-CD3 
and recombinant IL-2.  The difference between the average of Control vs. MDS 
patients was analyzed using Wilcoxon Signed Rank test.  

 

Lenalidomide recovers T-cell proliferation and augments Th1 

cytokine production in vitro. Given the T-cell defects observed in MDS, we 
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next determined whether lenalidomide increased T-cell responses after culture 

with the drug in vitro during stimulation. PBMCs from 18 (untreated) MDS 

patients were stimulated in vitro with anti-CD3/CD28 antibodies in the presence 

of either 5 μM lenalidomide or vehicle control (DMSO), and proliferation was 

determined by BrdU incorporation. Data in Figure 9A shows that culture with 

lenalidomide in vitro augments TCR-induced proliferation compared to DMSO-

treated cells in both CD4+ (p<0.001) and CD8+ (p<0.001) T-cells, in some cases 

up to that of healthy non-treated T-cells (shaded region) (Figure 9A).  These 

results were compared to unstimulated cells (Unstim) also treated with 

lenalidomide.  The fact that proliferation was not induced by lenalidomide in the 

absence of TCR stimulation indicates that lenalidomide alone has no direct 

mitogenic activity (Figure 9A).   

 In addition to proliferation, in vitro lenalidomide treatment increased 

cytokines induced by TCR stimulation, as shown in Figure 9B-C. The cytokine 

response favored T-helper 1 (Th1)-type cytokines including interferon-γ (IFN-γ), 

tumor necrosis factor-α (TNF-α) and IL-2, which are effectors of anti-tumor 

immunity and potentially important for the elimination of pre-malignant or 

dysplastic myeloid clones (20). As shown in Figure 9B-C, lenalidomide either 

decreased (IL-4) or induced no change (IL-10) in T-helper 2 (Th2) cytokines.   
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Figure 9. Lenalidomide augments Th1 type cytokine production and 
proliferation in MDS patient T-cells in vitro. MDS patient PBMCs were treated 
in vitro with either 5μM lenalidomide or vehicle control (DMSO) for 5 days and 
stimulated with anti-CD3/CD28 antibodies. On day 5, an aliquot of cells was 
taken and stained for BrdU incorporation in both CD4+ and CD8+ T-cells (A). 
The solid line at 17.71 (CD4+) and 17.90 (CD8+) represents the mean 
proliferation of untreated healthy donor T-cells. Gray shading indicates the 
normal range of one standard deviation above, and one standard deviation below 
the mean (A). Also on day 5, cells were stimulated with PMA/Ionomycin for 6 
hours, with the last 4 hours in the presence of the protein transport inhibitor 
Brefeldin-A (BFA) for intracellular cytokine staining. Flow cytometry was used to 
determine the percentage of CD4+ (B) and CD8+ (C) Interferon-γ (IFN-γ), Tumor 
Necrosis Factor-α (TNF-α), Interleukin (IL) -2, -4, and -10 secreting cells. The 
difference between Len and DMSO treated samples for each patient is shown. A, 
B, C. Wilcoxon rank sum test was used to determine statistical difference 
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between Len and DMSO treated groups, with DMSO treatment used baseline 
proliferation/cytokine secretion; p values are indicated. A Wilcoxon Signed Rank 
test was used to determine statistical significance between stimulated and un-
stimulated samples, A. 

 

Improved homeostatic regulation after lenalidomide treatment in 

vivo. Next, the effect of lenalidomide was examined on T-cells in MDS patients 

who were treated with lenalidomide in vivo for anemia.  The phenotype of T-cells 

in the peripheral compartment was examined using the surface markers CD45RA 

and L-selectin (CD62L) as phenotypic determinants of distinct naïve and memory 

T-cell subpopulations (321-323) with differential functional states.  Multicolor flow 

cytometry was used to determine the percentage of CD4+ and CD8+ T-cells with 

a naïve (N), central memory (CM), effector memory (EM), and terminal effector 

memory (TEM) phenotype, and the change in T-cell phenotype  (%post – pre) 

was then compared in responders (n=7) and non-responders (n=6).  The 

percentage of T-cells within each of the memory compartments was compared in 

samples that were collected before (pre) and 16 weeks after lenalidomide 

therapy (post), as shown in the treatment schematic, Figure 10A.  The flow 

cytometry gating strategy is detailed in Figure 10B. The T-cell compartment in 

MDS is dominated by EM and TEM T-cells compared to healthy controls, after 

adjustment for age (319). Memory phenotype skewing has been previously 

reported in MDS and correlated to chronic immune activation in vivo (77). Cells 

with the TEM phenotype represent a unique, poorly studied, population of 

effector cells that are generally senescent, lack the CD28 co-stimulatory 

molecule, and increase through aging and autoimmunity (44, 45).   Figure 10C 
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shows that the percentage of naïve CD4 and CD8  T-cells increased significantly 

(p=0.004 and p=0.003, respectively), while CD4 and CD8 EM (p=0.046 and 

p=0.02, respectively) and TEM (p=0.0032 and p=0.015, respectively) decreased 

significantly after lenalidomide therapy.  This improved composition within the T-

cell compartment was significantly associated with an erythroid response in 

MDS.  Lenalidomide significantly increased CD8+ CM T-cells (p=0.004, Figure 

10C) with a similar trend for increased CD4+ CM cells (p=0.09). The changes in 

homeostasis of naïve and memory cells in responders were not due to an overall 

increase in total lymphocytes (Figure 11), indicating that lenalidomide alters the 

homeostasis of T-cells in the peripheral blood after in vivo therapy in association 

with hematologic improvement. 
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Figure 10. Naïve T-cells and immune reconstitution after lenalidomide 
treatment in hematologic responders. A. Schematic of patient sample 
collection and lenalidomide treatment during clinical trial. B. Flow cytometry 
gating strategy for memory phenotype on patient PBMCs. Cells were stained for 
CD3, CD8, CD45RA, CD62L, and DAPI as a viability marker. Cells were first 
gated on DAPI negative, then either CD3+CD8+ (CD8) or CD3+CD8- (CD4). 
Memory phenotype of both CD4 and CD8 T-cells was then determined by 
CD45RA and CD62L expression, briefly: Naïve (N) cells are defined as 
CD45RA+CD62L+, Central memory (CM) are CD45RA-CD62L+, Effector Memory 
(EM) are CD45RA-CD62L-, and Terminal Effector Memory (TEM) are 
CD45RA+CD62L-. C. The proportion of Naïve, Central Memory, Effector Memory, 
and Terminal Effector Memory T-cells for both CD4 and CD8 was determined 
using flow cytometry. Naïve cells are described as CD3+CD62L+CD45RA+, 
Central Memory as CD3+CD62L+CD45RA-, Effector Memory as CD3+CD62L-

CD45RA-, and Terminal Effector Memory are described as CD3+CD62L-

CD45RA+.The difference Post-Pre of each of the phenotypes within Responding 
and Non-Responding patients is shown. (R n=7, NR n=6) Statistical analysis was 
performed using Wilcoxon Rank Sum. P values are indicated. 

 

Reversal of functional defects in lenalidomide-responsive patients in 

vivo. Since lenalidomide is able to alter T-cell homeostasis and reverses 

functional T-cell defects in vitro, we assessed the functional impact of 

lenalidomide therapy in vivo in CD4 and CD8 T-cells.  For this experiment, 

PBMCs were obtained before and after lenalidomide therapy and then stimulated 

ex vivo with anti-CD3 antibody to assess their proliferative capacity.  The 

proliferative response was determined by the ability to enter S-phase on a single 

cell basis using BrdU staining and detection by flow cytometry. The change (% 

positive post-pre) in BrdU positive cells after ex vivo stimulation was then 

compared among responders and non-responders. Although responders had a 

significantly greater proliferative response after therapy compared to non-

responders (Figure 12A, p=0.03 CD4; p=0.004 CD8), this difference was not 

associated with an increase in the absolute number of lymphocytes in this cohort 
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(Figure 11). The ability of T-cells to produce cytokines was also determined by 

intracellular cytokine flow cytometry analysis in responders and non-responders 

after ex vivo TCR stimulation with results shown In Figure 12B-C.  IL-2 (p=0.05 

CD4; p=0.01 CD8), IFN-γ (p=0.03 CD4; p=0.01 CD8), and TNF-α (p=0.004 CD4; 

p=0.01 CD8) secreting CD4 (B) and CD8 (C) T-cells were significantly increased 

by lenalidomide in responders compared to non-responders. Responders, 

however, had either no change or had a decrease in Th2-type cytokines (IL-4 

and IL-10) compared to non-responders (Figure 12B-C), indicating that the type 

of T-cell immune response is similar to lenalidomide treatment in vitro. 

 

 

 

 

 

 

 

 

 

Figure 11: Absolute lymphocyte count remains unchanged during 
lenalidomide treatment. Absolute lymphocyte count of Non-Responders (NR) 
and Responders (R) at Baseline (pre-treatment), and 1 month intervals during 4 
month course of treatment. 



www.manaraa.com

58 

 

Figure 12. Lenalidomide reverses T-cell tolerance in MDS patients with 
hematologic response through increased proliferation and cytokine 
production in vivo. A. PBMCs were collected from MDS patients (N=13) prior to 
(pre) and 16 weeks after (post) receiving lenalidomide therapy. Patients were 
evaluated using the IWG 2000 criteria for response, with 7 responders (R) and 6 
non-responders (NR). Cells were cultured in the presence of anti-CD3/CD28 
antibodies for 48 hours before measurement of BrdU incorporation. Percentage 
of proliferating CD4+ (upper) and CD8+ (lower) T-cells was determined via flow 
cytometry. The difference in proliferation (post-pre) was analyzed using Wilcoxon 
Rank Sum Test, with p values indicated. B-C. In vivo cytokine production was 
determined from the same PBMC patient samples as collected in A for both CD4 
(B) and CD8 (C) T-cells. PBMCs were stimulated for 48 hours with CD3/CD28 
antibodies, and then for the last 6 hours with PMA/ionomycin. Golgi-block and 
cytokine staining was performed as described in Figure 9B. 
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Improved T-cell homeostasis is associated with functional 

improvement in lenalidomide-responsive patients. Next, the functional 

changes in proliferation and cytokine production in MDS T-cells were correlated 

with changes in naïve T-cells in patients treated with lenalidomide.  

Lenalidomide-induced increases in naïve T-cells was found to positively correlate 

with the improved proliferative response observed in both CD4 (p=0.0003) and 

CD8 (p=0.0220) T-cells, as shown in Figure 13A. IFN-γ production in CD8 T-

cells was also positively correlated with the change in naïve T-cell percentage 

(p=0.0118), although this trend was not statistically significant in CD4+ T-cells 

(p=0.0941) (Figure 13B). Important to CD4+ T-cell helper function, the increase 

in IL-2 production was significantly associated with increased naïve T-cells in 

both T-cell subsets (CD4, p=0.0118 and CD8, p=0.0428, respectively). 

Collectively, these results suggest that one mechanism for lenalidomide-induced 

cytokine production and proliferation is mediated by reconstitution of the naïve T-

cell compartment and removal of senescent/hypo-responsive EM and TEM T-

cells in those MDS patients with hematologic improvement to lenalidomide.  

 

 

 

 

 



www.manaraa.com

60 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Increase in naïve cell production after lenalidomide treatment 
correlates with increased proliferation, IL-2, and IFN-γ production. A-C. 
MDS patient PBMCs were stimulated as previously described and the 
percentage of Naïve CD4+ and CD8+ cells after treatment was compared with 
BrdU incorporation (proliferation) (A), Interferon gamma production (B), and 
interleukin-2 production (C). Naïve cells were determined as described in 3C. A 
trend line was created for both CD4 and CD8 T-cells, and data analyzed via 
Spearman correlation. P values are indicated, as well as correlation of the data to 
the trend line (Spearman r), with 1 or -1 representing a perfect correlation. Non-
Responders are represented by an open triangle symbol; Responders are 
represented by closed circle. 
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The mechanism for increased naive T-cell distribution after 

lenalidomide treatment differs in CD4+ and CD8+ T-cells. Thymic involution 

limits naïve T-cell output from the thymus and induces a steady decline in naïve 

T-cells in the peripheral blood with age (324). Thymic naïve T-cell production 

ceases after the age of 65 in humans, so maintenance of the peripheral naïve 

compartment rests almost exclusively with homeostatic proliferation (325). To 

determine if the lenalidomide-induced increase in naïve T-cells is age related, we 

correlated changes in phenotype to age in responders and non-responders. As 

shown in Figure 14,  the percentage change in naïve CD4+ T-cells after 

lenalidomide treatment in hematologic responders (r=-0.92, p=0.007) showed a 

significant negative correlation with age; whereas, the change in naïve CD8+ T-

cells was age-independent (Figure 14).  These results suggest that naive CD4+ 

and CD8+ T-cells are differentially regulated by lenalidomide in vivo.  Naïve 

CD4+ T-cells may be uniquely increased through an age-dependent release from 

the thymus after lenalidomide therapy; whereas, CD8+ T-cells increase through 

homeostatic proliferation.    
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Figure 14. Naïve T-cell proliferation after lenalidomide treatment correlates 
with younger age in hematologic responders. MDS patient PBMCs were 
stimulated with antiCD3/antiCD28 antibodies and the percentage of naïve CD4+ 
(A) and CD8+ (B) T-cells after treatment with lenalidomide in both Responders 
and Non-Responders was correlated with age. A trend line was created for both 
Responders and Non-Responders in both the CD4+ and CD8+ populations. Data 
was analyzed via Spearman correlation. P values are indicated, as well as 
correlation of the data to the trend line (Spearman r), with 1 or -1 representing a 
perfect correlation. Non-Responders are represented by an open triangle symbol; 
Responders are represented by closed circle. 

 

Discussion 

The number of patients diagnosed with MDS annually is increasing as a 

result of the general trends in population aging (326). It is therefore critical to 

delineate response biomarkers and mechanisms of action of FDA approved 

therapies such as lenalidomide, to better tailor treatments to individual 

pathophysiological mechanisms. High rates of erythroid response in del(5q) 

patients are mediated by lenalidomide inhibition of the products of haplodeficient 

phosphatases encoded within the chromosome 5q CDR (246) . Nevertheless, 

responses in a subset of lower-risk patients lacking the del(5q) abnormality, and 

in patients with other hematologic malignancies, indicates that additional 

mechanisms may be important (230, 231). We previously reported that 

hematologic improvement to lenalidomide is associated with the appearance of 

bone marrow lymphoid aggregates, implicating immunologic changes associated 

with hematologic response (231). Thalidomide and structural analogues have 

potent immunomodulatory effects that are independent of del(5q), with 

documented changes in T-cells and NK-cells both in vitro and in vivo in multiple 

myeloma and Chronic Lymphocytic Leukemia (CLL) (260, 274, 327).   
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The effect of lenalidomide on immune activation in MDS has not been 

previously reported.  Our current and previous data show that MDS T-cells are 

anergic or hyporesponsive to TCR stimulation prior to lenalidomide treatment 

compared to T-cells from healthy controls (Figure 8), and only partially 

responsive to high-dose exogenous IL-2 (data not shown). After treatment with 

lenalidomide in vitro, however, lenalidomide augmented T-cell function, indicating 

that the anergy is at least partially reversible and drug responsive. Lenalidomide 

is known to increase IL-2 production from T-cells in vitro, mimicking endogenous 

IL-2 production (265). In this case, exogenous IL-2 was only partially able to 

restore function in these anergic T-cells, suggesting that additional factors may 

be involved.   

Based on these data, it is possible that lenalidomide directly improves 

signaling defects in anergic T-cells or improves immune composition.  Age-

dependent contraction of naïve cells and corresponding accumulation of effector 

and terminal effector memory cells (TEM and EM) impairs immune responses in 

the elderly (328). A significant improvement in the ratio of naïve-to-memory T-

cells was evident in MDS patients with erythropoietic activity, increased cytokine 

production, and increased proliferation after lenalidomide in vivo. In responding 

patients, lenalidomide was able to reverse the skewed naïve/memory cell ratio by 

increasing naïve and central memory T-cells in the peripheral compartment after 

therapy, without increasing the total number of lymphocytes (Figure 10C). The 

increase in naïve T-cells suggests that lenalidomide preferentially augmented 

naïve T-cell homeostatic proliferation, increased thymic output, or a combination 
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of both (329, 330). Since new naïve cell production deteriorates gradually over 

time as the thymus involutes, homeostatic proliferation becomes the main 

avenue for naïve T-cell expansion in the elderly (331-333). CD4+ and CD8+ T-

cells differ in homeostatic regulation since CD4+ T-cells are less susceptible to 

memory switching than CD8+ T-cells, leading to longer preservation of the naïve 

CD4+ T-cell pool over time in healthy individuals (77, 334). Our results indicate 

that lenalidomide expands naive CD4+ T-cells through an age-related process 

that is greater in younger patients (Figure 14) and expands naïve CD8+ T-cells 

through an age-independent process.  To confirm thymic involvement, 

examination of T-cell receptor excision circles (TRECs) to identify recent thymic 

emigrants is needed.  However, the relationship between lenalidomide and 

therapeutic response preference in younger MDS patients has been documented 

in a large cohort suggesting that better immune modulation in younger patients 

may play a role (335). It is possible that a suboptimal immune response in the 

elderly may be an important determinant limiting the activity of lenalidomide in 

the aged.   

Although there is differential regulation of naïve CD4+ and CD8+ T-cell 

subsets, lenalidomide is able to increase the liberation of effector cytokines and 

increase proliferation of both T-cell subsets in responders. Our analyses showed 

that Th1-type cytokine secretion (Figure 12) was increased in vivo in responders, 

suggesting that the effect of lenalidomide on hematopoiesis may be mediated by 

eradication of specific abnormal myeloblasts involved in clonal evolution in MDS 

(336). In support of this idea, Neuber et al. recently reported enhanced antigen-
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specific T-cell activity in vitro and in vivo in multiple myeloma patients, indicating 

that lenalidomide has the ability to potentiate tumoricidal activity of effector T-

cells (260).  Given that MDS T-cells are anergic, and multiple mechanisms are 

typically involved in this process, it is possible that lenalidomide improves the 

suppressive microenvironment within the bone marrow of MDS patients, 

indirectly reversing anergy within the T-cell population. MDS blast cells have 

been shown previously to express higher levels of the inhibitory molecule B7-H1 

that suppress T-cell proliferation and induce apoptosis of normal T-cells in vitro 

(209). Natural CD4+ Tregs, which impair T-cell activation (337), are also 

increased in some MDS patients. Therefore, lenalidomide may eliminate the 

suppressive populations within the bone marrow, which in turn improves T-cell 

responsiveness and acts in concert to restore hematopoiesis in lower risk 

responsive MDS patients.  

Our findings indicate that hematologic response to lenalidomide is 

associated with homeostatic reconstitution and reversal of tolerance in T-cells in 

lower-risk MDS patients.  We show that while activation of the immune 

compartment occurs after lenalidomide treatment, not all patients re-establish T-

cell homeostasis and immune function, or display hematologic improvement after 

treatment.  This variability in activity re-iterates the importance of identifying 

biomarkers predictive for response to enable more accurate selection of patients 

for lenalidomide therapy in non-del(5q) MDS. Our data provides a rationale to 

examine a larger cohort of patients to determine if basal T-cell function is 

predictive for response to lenalidomide in MDS.  
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Materials and Methods 

Patients and healthy controls. MDS patients (n=100) were consented 

at H. Lee Moffitt Cancer Center in Tampa, FL to participate in a peripheral blood 

collection protocol approved by the University of South Florida Institutional 

Review Board from 2004-2009. All patients signed University of South Florida 

Institutional Review Board-approved informed consents for the collection of 40 ml 

of peripheral blood in heparin tubes.  Samples were obtained from each patient 

at various times from 2004-2009 for immune monitoring studies and all cells were 

frozen in liquid nitrogen. Twenty-one of these patients were treated with 

lenalidomide, but only 13 patients (Table 1) treated with lenalidomide had 

samples obtained both prior to (Pre) and after (Post) therapy.  Lenalidomide was 

administered at a dose of 10 mg for 21 out of a 28-day cycle for four cycles. In all 

patients, the post-treatment sample was drawn after 16 weeks of therapy when 

evaluated for hematologic response. Hematologic response was reported 

previously within a larger group of MDS patients (338). 

Peripheral blood from buffy coats of healthy donors was obtained from the 

Southwest Florida Blood Services, St. Petersburg, FL, for use as controls (n=28) 

in some experiments. Healthy control T-cells for in vitro experiments were 

isolated from buffy coats using RosetteSep® Human CD3+ T-cell Enrichment 

Cocktail (StemCell Technologies, Vancouver, BC Canada) according to the 

manufacturer’s protocol. Peripheral blood mononuclear cells (PBMCs) were 

isolated from patients and healthy donors by Ficoll-Hypaque (Amersham 
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Pharmacia Biotech, Piscataway, New Jersey, USA) gradient centrifugation, as 

previously described (319).   

 

T -cell activation. To activate the T-cell receptor (TCR), PBMCs were 

stimulated with plate-bound anti-CD3 antibody (10 μg/ml) (BD Pharmingen, San 

Jose, CA USA) coated onto flat-bottomed polystyrene tissue culture plates 

overnight at 4ºC.  PBMCs (1 x 106/ml) were added to the coated 96-well plates in 

a 200 µl volume for 48 hours at 37ºC. For intracellular cytokine experiments, 

soluble anti-CD28 (1μg/ml) (BD Pharmingen, San Jose, CA USA) was added to 

provide additional co-stimulation.   

 

Proliferation. Proliferation was determined after in vitro activation by 

bromodeoxyuridine (BrdU) incorporation (BrdU flow kit, BD Biosciences, San 

Diego, CA).   10 µM of BrdU was added during the last 45 min of T-cell 

stimulation.  BrdU-pulsed PBMCs were harvested and stained with anti-CD4-PE 

and anti-CD8-PE-Cy-5 (BD pharmingen, San Jose, CA USA). The cells were 

then fixed and permeabilized with BD Cytofix/Cytoperm buffer and incubated with 

DNase for 1 hour at 37ºC. Cells were then stained with anti-BrdU-FITC antibody 

before flow cytometry analysis on an LSRII flow cytometer (BD Biosciences, San 

Jose, CA USA). The percentage of BrdU positive cells from each population was 

analyzed using Flow-Jo Software (BD Biosciences).  
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Intracellular cytokine staining.  For intracellular cytokine staining in T-

cells from MDS patients treated in vivo with lenalidomide, PBMCs from patients 

were stimulated on anti-CD3-coated antibody plates (10μg/ml) plus anti-CD28 

(1μg/ml) for 6 hours and cytokines were examined by intracellular staining in 

gated CD4+ and CD8+ T-cells.  Stimulation with anti-CD28 alone was used as a 

negative control, and stimulation with PMA (5ng/ml) and ionomycin (250ng/ml) 

(BD BioSciences, San Jose, CA USA) was used as a positive control. For 

intracellular cytokine staining of MDS patient cells cultured in vitro with 

lenalidomide, PBMCs were treated with/without 5μM lenalidomide for 5 days in 

the presence of CD3/CD28, as described above. On day 5, they were re-

stimulated with PMA/ionomycin for 6 hours. In both cases, Brefeldin A (10 μg/ml, 

Sigma, CA USA) was added during the last 4 hrs of stimulation to block cytokine 

secretion. Cells were collected and incubated in EDTA (2 mM final concentration) 

for 15 min at room temperature, fixed with 2% formaldehyde for 20 min at room 

temperature, and washed with PBS containing bovine serum albumin (BSA). 

Cells were permeabilized with FACS permeabilization solution and  triple-stained 

with CD3-Pe-Cy5, CD8-FITC and intracellular cytokines Interferon- (IFN), 

Tumor Necrosis Factor- (TNFα), Interleukin (IL)-2, -4 and -10 (all PE-conjugated 

antibodies, BD Biosciences, San Jose, CA USA). Cells were subsequently 

washed, re-suspended in staining buffer, and run on a LSRII flow cytometer (BD 

Biosciences). Data were analyzed using Flow-Jo Software (BD Immunocytometry 

Systems, San Diego, CA). Quadrant markers were positioned to include >99% of 

immunoglobulin control stained cells in the negative quadrant. 
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Detection of naïve and memory T-cell populations.  Naïve and memory 

CD4 and CD8 T-cell subtypes were detected after surface staining with anti-CD3-

PE, anti-CD45RA-FITC, anti-CD62L-APC, and either anti-CD4- or CD8-PECy5 

(all from BD Biosciences, San Jose, CA USA). Naïve and memory T-cell 

populations were distinguished by CD45RA and CD62L expression, as described 

previously by flow cytometry (319, 322, 323); briefly, the memory phenotype 

populations are characterized as naïve (CD45RA+/CD62L+), central memory 

(CD45RA-/CD62L+), effector memory (CD62L-/CD45RA-), and terminal effector 

memory (CD45RA+/CD62L-).  

 

Preparation of lenalidomide for in vitro studies.  Lenalidomide 

(Revlimid®) was kindly provided by Celgene Corporation, Warren, NJ.  The drug 

was weighed and dissolved at the time of use in dimethyl sulfoxide (DMSO) and 

diluted 1:1000 in culture media to a final concentration of 5 μM because storage 

of stock solutions at 20°C resulted in variable loss in activity.  An equal volume 

of DMSO was used as a control. 

 

Statistical Analysis.  To analyze the difference of paired samples, we 

used a Wilcoxon Signed Rank test to determine if the difference significantly 

differed from zero. A Wilcoxon Rank Sum test was also used for comparing two 

unpaired samples. To assess the relationships between age and the percentage 

of cells that were BrdU positive, as well as age and naïve cell percentage, 
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Spearman correlation coefficients were calculated.  Relationship between 

lenalidomide and DMSO treated in vitro experiments were analyzed using a 

student T test. All p values were two sided tests with a significance value of 

p<0.05. 
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CHAPTER 3 
 

CD28 expression is required for lenalidomide immune modulation: 
identification of a potential mechanism of drug resistance 

 

Introduction 

 CD28 is a member of the B7 family of T-cell costimulatory molecules that 

binds to CD80/CD86 (B7-1/B7-2) expressed on APCs (266, 339, 340). When the 

T-cell receptor (TCR) CD3 complex is activated, proliferation can occur, but is 

slightly less in the absence of CD28.  CD28 receptor co-stimulation, however, is 

essential for the induction of interleukin-2 (IL-2) gene expression and for the 

prevention of tolerance/anergy within a TCR-activated T-cell population (142, 

341-343). CD28 is a transmembrane protein that contains two immuno-tyrosine 

activation motifs (ITAMs) within the cytoplasmic tail.  Receptor-ligand interaction 

induces CD28 homo-dimerization, phosphorylation by src-family kinases lck and 

fyn, and the activation of downstream signaling mediators including 

phosphoinositide 3-kinase (PI3K) and extracellular signal-regulated kinases 

(ERK) 1/2 (ERK1/2) (129, 130).  Absence of CD28 co-stimulation has been 

implicated in tumor immune evasion and is an important barrier to the success of 

tumor vaccine therapy and usually occurs due to B71/2 down-regulation or loss 

of CD28 expression(344) .  

 The necessity of CD28 for IL-2 production has been illustrated using CD28 

homozygous deficient (-/-) mice, which lack the ability to induce IL-2 (143) in 
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response to antigen stimulation. CD28 is inherently expressed on both CD4+ and 

CD8+ T-cell subsets, and increases upon TCR stimulation. Aging of the immune 

system in humans, however, is associated with the accumulation of CD28-

deficient (CD28-, CD28null) T-cells, altering T-cell homeostasis and reducing 

pathogen and vaccine immune responses (345, 346). CD28 receptor down-

regulation results from either chronic TNF-α exposure, as seen in bone marrow 

of MDS patients, IL-15 exposure in the absence of TCR ligation, or repeated 

TCR engagement indicative of robust proliferative in vivo history (87, 347).   

 Lenalidomide (LEN) is a second-generation thalidomide analogue with 

potent immune-modulating activity approved by the FD for treatment of MDS, 

multiple myeloma (MM), and lymphomas.  Although known to replace the need 

for CD28 external ligation, the mechanism of LEN is poorly understood. The 

presence of an interstitial deletion on chromosome 5q (del(5q)) enhances 

apoptotic responses of myeloid clones in MDS and improves hematologic 

response rates, and approval for LEN in non-del(5q) MDS was issued based on 

erythroid improvement in a subset of patients (313).  

  It is currently unclear if LEN mediates hematologic improvement or anti-

tumor activity in lymphomas, MDS, or MM through immune modulation.  We 

previously showed that T-cells from MDS patients are inherently non-

responsive/anergic to stimulation, and secrete less T-cell activating cytokines 

(307). Lymphoid aggregates increase in the bone marrow of MDS patients that 

improve hematologically, implicating immunologic changes in the response (231). 

Our previous findings indicated that patients with erythroid improvement have an 
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increase in T-cell proliferation and an increase in IL-2 and Th1 cytokine 

production after TCR activation as well as normalization of their naïve:memory 

ratio that may contribute to eradication of the myeloid clone (307).  

Recently a direct molecular target of LEN was shown to mediate cytokine 

production in T-cells (257), but mechanism of LEN co-stimulation through the 

CD28 receptor is unknown.  Therefore, the current study was conducted to 

determine if LEN requires CD28 expression for IL-2 production in T-cells (339). If 

the loss of CD28 renders cells resistant to LEN-induced immune modulation, 

then pre-treatment phenotyping for the expression of CD28 may be used as a 

biomarker to predict LEN immunomodulatory drug response. 

 

Results 

Lenalidomide induces robust interleukin-2 (IL-2) production in the 

absence of CD28 co-stimulation. LEN has been shown to enhance proliferation 

and IL-2 expression/secretion in T-cells.  The expression of IL-2 is completely 

dependent upon CD28 activation. To determine if LEN increases IL-2 in the 

absence of APCs or without the addition of anti-CD28 antibody, primary purified 

CD3+ T-cells were isolated to greater than 95% purity from healthy donors and 

stimulated with increasing concentrations of anti-CD3 antibody in the presence or 

absence of LEN treatment (Figure 15A). After simulation with plate-bound anti-

CD3 antibody without ligating CD28, LEN increased the production of IL-2 in a 

dose dependent fashion. In contrast, there was little to no IL-2 produced without 
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CD28 ligation in cells treated with an equal volume of drug vehicle control 

(DMSO). These results indicate that there is a role for CD28 signaling in LEN 

immune modulation. LEN treatment was also able to increase, by an average of 

6-fold, IL-2 production in T-cells that received both the TCR signal through anti-

CD3 antibody stimulation plus anti-CD28 (p<0.001, Figure 15B) co-stimulation, 

showing that LEN augments the signal initiated by CD28. T-cells were then 

stimulated with a fixed dose (5µg/ml) of anti-CD3 alone with increasing 

concentrations of LEN to demonstrate the dose-dependency of IL-2 production 

(Figure 15C). In addition to protein secretion, we found that LEN enhances IL-2 

mRNA expression.  A dose-dependent increase in IL-2 mRNA was present in 

cells treated with anti-CD3 alone without CD28 after 18 hours compared to 

DMSO-treated cells, indicating that LEN transcriptionally activates the IL-2 gene 

(Figure 15D).     
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Figure 15. Lenalidomide increases IL-2 production in the absence of CD28 
external co-ligation. T-cells purified from healthy donor PBMCs were stimulated 
in the presence of increasing concentrations of anti-CD3 in the presence of 10μM 
lenalidomide (Len) or vehicle control (DMSO). A subset of cells were stimulated 
with both anti-CD3+CD28 as a positive control. A-B. IL-2 production was 
measured in culture supernatant of cells stimulated with increasing 
concentrations of anti-CD3, (A) or anti-CD3+ anti-CD28 (1.0µg/ml) (B) via ELISA. 
C. Purified T-cells were stimulated in the presence of 5µg/ml anti-CD3 and 
increasing concentrations of Len. D. IL-2 mRNA expression was examined using 
RT-qPCR after 18 hours of increasing concentrations of anti-CD3 stimulation. 2-
way non-parametric ANOVA. *=p<0.05, ***=p<0.001. 

 

Since LEN increases IL-2 gene expression, likely through the CD28 

pathway, we determined if LEN augments the binding of a CD28-specific 

transcription factor to the IL-2 promoter.  Multiple transcription factors are 

required to interact with the IL-2 promoter transcription initiation (Figure 16A). 

Some transcription factors are regulated by the TCR signaling cascade, such as 

NFAT-1, AP-1, and NF-κB, but these are insufficient for transcription of the IL-2 

gene (150). Only binding of transcription factors such as pCREB (a CD28-

Response Element specific binding factor), NF-κB and AP-1 within the CD28 

response element following CD28 receptor ligation is capable of inducing IL-2 

transcription. To determine if LEN treatment induces the binding of pCREB to the 

IL-2 promoter in the absence of CD28 co-ligation, we performed chromatin 

immunoprecipitation (Figure 16A). Results shown in Figure 16B indicate that 

with anti-CD3 treatment alone, LEN increases binding of pCREB to the IL-2 

promoter compared to DMSO.  These results indicate that LEN specifically 

activates the CD28 pathway in conjunction with TCR stimulation. 
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Figure 16. CD28 downstream transcriptional element is activated after LEN 
treatment. A. Schematic of transcription factor binding sites on the IL-2 
promoter. Black arrows indicate forward and reverse primers used in Chromatin 
Immunoprecipitation (ChIP) to evaluate pCREB binding to the CD28-Response 
Element of the IL-2 promoter. B. pCREB binding to the IL-2 promoter after 18 
hours stimulation with 1.0μg/ml anti-CD3 antibody in the presence of vehicle 
(DMSO) or 10μM Len treatment. CD3+CD28 stimulation and IgG pull-down were 
used as positive and negative controls, respectively. All values were calibrated to 
10% input and calculated using ∆∆CT  method relative to un-stimulated treated 
with DMSO. Graph is representative of 2 replicates. Statistical analysis was 
performed using an unpaired T-test. *p<0.05  **p<0.01. 
 

Surface expression of CD28 is increased after LEN treatment upon 

TCR activation. Since LEN augments T-cell function through the CD28 pathway, 

it is possible that LEN alters CD28 surface expression or recruitment to the 

immune synapse. We therefore examined the surface expression of CD28 in 

primary T-cells from healthy donors that were either left un-stimulated or 

stimulated with anti-CD3 for 3 days (Figure 17). Figure 17A shows a 

representative flow plot of CD28 surface expression under these conditions. 

Treatment of cells with anti-CD3 in the absence of CD28 co-ligation results in 

significant increase in the number of CD28 molecules per cell compared to 
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unstimulated cells, as indicated by a shift in median fluorescence intensity (MFI).  

After treatment with LEN and anti-CD3, compared to DMSO plus anti-CD3, CD28 

surface expression is significantly increased in both CD4 and CD8 LEN-treated 

T-cells, suggesting that CD28 expression may be an important determinant of 

LEN function (Figure 17A-B).  

 
Figure 17. Surface expression of CD28 is increased after LEN treatment 
upon TCR activation. Isolated T-cells were treated with Len or DMSO and 
stimulated with polystyrene beads coated with anti-CD3 antibody alone. CD28 
surface expression was measured 3 days after stimulation by flow cytometry, and 
an example histogram of CD28 surface expression after anti-CD3 stimulation is 
shown in A. The black line indicates PE-isotype (negative control), red shaded 
region represents un-stimulated T-cells, blue line represents DMSO treated, and 
green line is LEN treated T-cells. B. Graphs represent the CD28 MFI in one of 
four independent experiments on both CD4+ (left) and CD8+ (right) T-cells. The 
difference between Len and DMSO was determined using 2-way non-parametric 
ANOVA **=p<0.01, ***=p<0.001. C. CD28 mRNA expression was measured after 
18 hours of anti-CD3 stimulation after LEN and DMSO treatment. P values in all 
instances are not significant. 
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CD28 surface expression is essential for LEN-induced IL-2 

production. Ligation of the extracellular portion of the CD28 receptor with anti-

CD28 antibody cross-linking abolishes CD28 receptor expression through 

internalization.  Approximately 50% of CD28 is then targeted for degradation in 

the endosome while the remainder is recycled back to the surface. For this 

reason, surface expression of CD28 was reduced by treating with varying doses 

of anti-CD3 in combination with anti-CD28 antibodies to induce receptor 

internalization and degradation. Flow cytometry confirmed that CD28 expression, 

in the presence or absence of LEN, was significantly reduced after co-

stimulation, with the rate and degree of surface recycling depending on the TCR 

signal strength.  It was evident that 10 µg/ml of anti-CD3 significantly increased 

the rate (24 versus 48 hours) and proportion of cells that re-express CD28 

(Figure 18A and B), but this was only slightly increased by treatment with LEN.   

To elucidate whether the presence of the CD28 receptor is necessary for 

LEN-induced IL-2 production, we purified CD28+ T-cells by flow cytometry 

sorting and then subjected them to either CD28 siRNA or control siRNA. 

Knocking down CD28 expression in primary T-cells utilizing siRNA is technically 

challenging due to the long protein half-life and stable surface expression in the 

CD28.  Therefore, we took advantage of receptor degradation in the 

experimental design. siRNA-treated cells were compared to siRNA control 

(Figure 18)-treated cells after 24 and 48 hours in the presence of 1.0 or 10 µg/ml 

of anti-CD3 plus anti-CD28 antibody stimulation. Re-expression of the receptor 

was slightly greater in cells treated with a higher dose of anti-CD3 (10 µg/ml 
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compared to 1.0 µg/ml) after 72 hours, but siRNA-CD28 treatment significantly 

reduced the expression of CD28 in all conditions.  An example of the surface 

expression of CD28 by flow cytometry in the knockdown experiments is shown in 

Figure 18A, and quantified in Figure 18B. Production of IL-2 in LEN or DMSO 

treated cells with either siRNA-CD28 knockdown or control siRNA is shown in 

Figure 18C. Reduction in CD28 significantly diminished IL-2 and effectively 

blocked LEN-induced IL-2 release (decreased from a 7.5-fold increase to 4.9-fold 

increase on average compared to control siRNA), as shown in Figure 18C.  This 

data suggests that the expression of CD28 on the surface imparts response to 

LEN. 

CD28null cells are resistant to LEN. As described previously, CD28 

surface expression is lost on CD8+ memory T-cells as a function of aging, which 

contributes to the accumulation of a hypo-responsive CD8+CD28- T-cell 

population. The loss of CD28 expression is unique to the CD8 compartment 

(348), as there is little or no accumulation of CD4+CD28- T-cells in healthy 

individuals. We then determined if LEN could reverse functional defects of 

naturally occurring CD28null T-cells. We sorted on CD8+CD28+ and CD8+CD28- 

T-cells from healthy donors, stimulated the cells ex-vivo with anti-CD3 and 

examined proliferation and IL-2 production from these two distinct T-cell subsets 

(Figure 19A-B). As shown in Figure 19A, LEN increased proliferation of 

CD8+CD28+ T-cells in a dose-dependent fashion with anti-CD3 stimulation 

alone.  The CD8+CD28- T-cell population displayed an overall significant 

reduction in proliferation compared to the CD28+ T-cells, and displayed no 
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response to LEN compared to DMSO-treated cells after anti-CD3 stimulation 

(Figure 19A). Elaboration of IL-2 was also completely abolished in CD8+CD28- 

T-cells with no response to LEN. These results indicate that the surface 

expression of CD28 on T-cells is indispensable for LEN immunomodulatory 

response.  
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Figure 18. Knockdown of CD28 expression abrogates LEN activity in T-
cells. CD28+ T-cells were sorted from healthy donors and transfected with either 
non-target (control siRNA) or CD28 siRNA. T-cells were then stimulated with 
either 1.0 or 10 μg/ml CD3 and 2.0 μg/ml CD28 for 48 and 72 hours in the 
presence of 10μM Lenalidomide or vehicle control (DMSO). A. Example of flow 
cytometry plot of one experiment to evaluate CD28 expression after siRNA 
infection and plate bound stimulation at 48 and 72 hour time points. Un-
stimulated T-cells were used as positive control for CD28 expression. B. Bar 
graphs (right) quantitatively represent the average %CD28+ T-cells at 48 and 72 
hours from 3 independent experiments. C. IL-2 secretion in the supernatant in 
cells from A-B was collected after 48 and 72 hours of stimulation and evaluated 
by ELISA. B,C) Statistical analysis was performed using 2-Way ANOVA. 
**P<0.001  ***P<0.001. 
 

Accumulation of CD28- T-cells in MDS patients is associated with 

LEN failure. Although LEN is approved for the treatment of MDS and MM, there 

are subsets of patients that are naturally resistant to the drug. Since CD28 

expression is essential for LEN immunomodulatory effects in T-cells, we 

analyzed CD28 expression on T-cells from MDS patients who were treated with 

LEN (Figure 19C-E). Samples were taken before LEN treatment, and the 

percentage of CD28 positive cells was compared in responders (R) and non-

responders (NR). Hematologic response was assessed after 16 weeks using 

IWG criteria for hematologic improvement. As shown in a representative R and 

NR patient (Figure 19C), the percentage of CD28+ cells was greater in the R 

compared to the NR. Data on this subgroup of MDS patients (Figure 19D) 

indicate that the proportion of CD28 expressing cells pretreatment is significantly 

associated with clinical outcome favoring more CD28+ cells in the responders.  

Although CD4 T-cells rarely lose CD28 expression in healthy donors, the NR 

MDS cohort had a significant accumulation in CD4+ CD28- T-cells (p=0.0061 

Figure 19D). A similar significant decrease in the percentage of CD28+ T-cells in 
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NR patients was also seen in the CD8 compartment (p=0.0242) (Figure 19E).  

This data shows a correlation between accumulation of CD28- T-cells and 

resistance to LEN in MDS. 

Figure 19. CD28null T-cells are associated with LEN Response. A-B. Healthy 
donor CD8 T-cells were sorted into CD28+ and CD28- populations before being 
stimulated for 3 days in the presence of increasing concentrations of plate bound 
anti-CD3 antibody (μg/ml) in the presence of DMSO (Vehicle) or 10μM 
Lenalidomide. A. BrdU incorporation was used to measure proliferation of sorted 
CD8+CD28+ and CD8+CD28- T-cells as determined via flow cytometry on day 3. 
B. CD8+CD28+, CD8+CD28- T-cells were stimulated as previously described, 
and supernatant was collected on day 3 of stimulation. IL-2 secretion was 
measured via ELISA. *** p<0.001. MDS patient PBMCs prior to lenalidomide 
treatment were analyzed for CD28 expression, and correlated with hematologic 
response. C. Representative histograms of CD28 expression on both CD4+ (Left) 
and CD8+ (Right) T-cells of erythroid Non-Responders (NR) and Responders 
(R). Black shaded region indicates isotype control staining. D-E. Percentage of 
CD28+ T-cells from both CD4+ (D) and CD8+ (E) populations was analyzed in 7 
NR and 4 R.  The difference between the two groups was determined using a 
Mann-Whitney T-test with p-values indicated on graphs.  
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 We have previously shown that MDS patients who respond to LEN 

therapy have significant changes in the naive and memory T-cell compartment 

after LEN treatment (307). Cells with a CD28- phenotype generally express 

CD45RA but lack lymphoid-homing receptors such as CCR7, CD62L, and CD27, 

and these terminal effector memory (TEM) cells increase with age and are 

associated with autoimmunity (44, 45). The pre-treatment percentage of CD8+ 

naïve and memory T-cells (central memory, effector memory, and TEM cells) 

was then compared in LEN-treated MDS patients and correlated with response 

(R verses NR).  Figure 20A-C are representative flow plots of CD28 expression 

in the different memory phenotypes on T-cells from a healthy donor (Fig. 20A), 

Responder (Fig. 20B), and Non-Responder (Fig. 20C). As shown in Figure 20, 

there was a clear distinction in the T-cell phenotype based on hematologic 

response.  CD8+ TEM cells were significantly expanded in NR compared to R 

(p=0.02) (Figure 20E), where both naïve and central memory T-cells showed a 

tendency toward lower percentages (p=0.06 and =p=0.07).  The difference in 

TEM CD8+ T-cells also reflects the reduction in the percentage of TEM 

expressing CD28 (Figure 20D, p=0.03).  Although CD28-TEM CD8+ T-cells 

accumulate with age, the increase in these cells in NR was age-independent, as 

shown in Figure 20F. These results indicate that CD28 expression is necessary 

for immunologic responsiveness to LEN and loss of CD28 expression of CD8+ 

and CD4+ T-cells correlates with resistance to LEN in non-del(5q) MDS. 
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Figure 20. Non-Responder MDS patients have higher levels of Terminal 
Effector Memory (TEM) CD8+ T-cells and lower levels of CD28+ T-cells. The 
proportion of Naïve, Central Memory, Effector Memory, and Terminal Effector 
Memory T-cells for both CD4 and CD8 from MDS patients treated with 
Lenalidomide was determined using flow cytometry. A-C. Phenotype of CD3+ 
Healthy Donor (A) and MDS Patient Responders (B) and Non-Responders (C) 
and CD28 expression within each memory subset. D. Quantification of CD28+ T-
cells within the TEM compartment in lenalidomide NR (n=7) and R (n=4) MDS 
patients. E. The proportion of each memory phenotype making up the CD8 T-cell 
compartment is shown for both Responding and Non-Responding patients prior 
to lendalidomide treatment, and is correlated with response after 16 weeks of in 
vivo treatment. Statistical analysis was performed using Wilcoxon Rank Sum 
Test. F. Proportion of CD8+TEM cells compared with age in MDS Responder (R) 
and Non-Responder (NR) patients (p=ns). 
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Discussion 

LEN is a highly potent immunomodulatory drug (IMID®) used to potentiate 

T-cell and NK cell responses in a number of hematologic and solid malignancies. 

Anti-tumor activity of T- cells is increased by stimulating greater production of 

cytokines (307, 349), enhancing tumor antigen recognition (260), and activating 

T-cells by co-stimulation (265). Antibody-dependent cellular cytotoxicity (ADCC) 

(285, 290) and direct induction of tumor cell cytotoxicity (231, 350, 351) 

reportedly increases NK cells after LEN treatment. Since LEN enhances the 

activity of NK-, T- and B-cells, use of this agent is rapidly increasing in many 

settings and the direct molecular target responsible for enhancing immune 

function is under intense investigation. We and others have shown that LEN 

augments the production of IL-2 in the presence of anti-TCR activation alone 

(Figure 15), a function that is closely tied to CD28 signaling. Although LEN may 

replace the need for external ligation of the co-stimulatory molecule, we have 

demonstrated the requirement for, and the effect of LEN on CD28 surface 

expression. Ideally, the role of CD28 should be determined using T-cells from 

CD28 knockout mice, as receptor expression would be genetically eliminated, 

and these mice have been shown to lack IL-2 transcriptional activation after CD3 

antibody stimulation. Unfortunately due to accelerated drug metabolism, altered 

pharmacokinetics, or differential regulation of LEN in murine T-cells, this 

experiment was not feasible.  To evaluate the role of CD28, a knockdown 

approach was used along with evaluation of naturally-occurring CD28 deficient 
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cells.  Our data reveal a novel aspect of LEN function and implicates the 

expression of the CD28 receptor in the molecular mechanism. 

 LEN and the thalidomide analog pomalidomide were recently shown to 

induce T-cell activation by inhibiting the activation of the E3 Ub ligase cereblon 

(CRBN).  The  function of CRBN in T-cells is undefined (257) and the only known 

role of the molecule is in brain and behavioral function.  Casitas-B-lineage 

lymphoma protein-b (Cbl-b) and ITCH are RING-finger domain containing E3 Ub 

ligases known to regulate CD28 signaling.  Cbl-b establishes the threshold for T-

cell activation by regulating CD28 and TCRζ recruitment to lipid rafts and 

repressing PI3K and Vav1 signaling in the absence of CD28 co-stimulation (158).  

The activation of CD28 overcomes the repression by PKCθ-mediated 

phosphorylation, which targets Cbl-b for degradation (164).  Cbl-b homozygous 

deficient mice exhibit lipid raft aggregation, sustained tyrosine phosphorylation of 

Vav1 and cytokine production in response to anti-CD3 stimulation without CD28 

ligation, similar to LEN treatment (155, 156).  Cbl-b -/- mice develop spontaneous 

autoimmune-mediated diabetes, increased susceptibility to experimental 

autoimmune encephalomyelitis, which is a mouse model of multiple sclerosis), 

and Cbl-b-null T-cells mediate more efficacious responses to tumors.  Our data 

suggests that LEN modulate cells similarly to a deficiency in Cbl-b.  Whether the 

drug can target other E3 Ub ligases or whether CRBN plays and undefined role 

in regulating CD28 signaling remains to be determined.  It is clear, however, that 

LEN does not interfere with CD28 receptor internalization or recycling. CD28, 

CTLA4 and ICOS are regulated through receptor endocytosis and trafficking 
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through endosomes and while E3 Ub ligases are known to control receptor 

trafficking, their role in CD28 internalization is unknown. 

 CD28 ligation with CD80/CD86 on APCs in the presence of anti-TCR 

ligation enables a fully competent signal response by the T-cells, inducing 

cytokine production and proliferation, and preventing anergy (266). Anergy 

induction and T-cell non-responsiveness to tumor antigens are major obstacles 

to tumor immunotherapy (176). In solid tumors and hematologic malignancies, 

there is little expression of co-stimulatory molecules on the tumor cells 

themselves, as well as down-regulation of co-stimulatory molecules on DCs 

within the tumor environment (352). The lack of co-stimulation induces tolerance 

or ignorance by the immune system, preventing tumor-cell detection and 

eradication. LEN is being investigated as a combination therapy in a number of 

solid and hematologic malignancies due to its co-stimulatory function, while 

suppressing Treg expansion (276, 277). LEN’s successes in hematologic 

malignancies like B-Chronic Lymphocytic Leukemia (B-CLL), Non-Hodgkin’s 

Lymphoma (NHL) and MM are attributed to an immune-mediated anti-tumor 

effect, as well as direct anti-tumor activity. Clinical studies in solid malignancies 

such as melanoma and ovarian cancer have not demonstrated single-agent 

activity, and only nominal survival benefit (353-356).  The combination of LEN 

with chemotherapy, however, has shown greater activity.  For immunotherapy, 

benefit of the drug is evident in several solid tumor settings including metastatic 

melanoma (357), castration resistant prostate cancer (358, 359), pancreatic 

adenocarcinoma (360), and ovarian cancer (361). 
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 Although LEN has had great successes in MDS and hematologic 

malignancies, and has shown potential in a variety of solid tumors, there are still 

subsets of patients that do not respond to treatment. Therefore, predictive 

biomarkers of response are necessary to help select, prior to therapy, patients 

that are likely to respond. We demonstrate in this study that CD28 expression on 

T-cells is likely an indicator of LEN responsiveness because of the necessity for 

CD28 expression for LEN-induced T-cell function (Figure 18). Augmented 

immune function is also implicated in the response of LEN in a subset of low-risk 

non-del5q MDS patients (307), and we show here that there is an accumulation 

of CD8+ TEM cells prior to LEN treatment in non-responding patients, which are 

predominantly CD28null (Figure 20). Hematologic response to LEN in MDS and 

MM is likely to involve the immune response (261, 307), and our data indicates 

that the accumulation of CD28null T-cells may be a factor in LEN resistance and 

suggests that additional clinical studies of biomarker analysis are necessary to 

confirm this as a predictive biomarker. 

Materials and Methods 

Healthy Donor T-cell isolation and activation. Peripheral blood from 

buffy coats of healthy donors was obtained from the Southwest Florida Blood 

Services, St. Petersburg, FL, for use as controls and for the purification of T-

cells. T-cells were isolated from the buffy coats using RosetteSep® Human 

CD3+ T-cell Enrichment Cocktail (StemCell Technologies, Vancouver, BC 

Canada) according to the manufacturer’s protocol. To activate the T-cell receptor 

(TCR), T-cells were stimulated with plate-bound anti-CD3 antibody (1 μg/ml or 
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indicated concentration) (BD Biosciences, San Jose, CA USA) coated onto flat-

bottomed polystyrene tissue culture plates overnight at 4ºC. Purified T-cells (1 

x106/ml) were added to the coated 96-well plates in a 200 μl volume for 48 hours 

at 37ºC. In some instances, 1.0 µg/ml anti-CD28 was added for co-stimulation.  

Stimulation followed by measurement of CD28 surface expression was 

performed using anti-CD3 (10 µg/ml) alone or anti-CD3 (10 µg/ml) plus anti-

CD28 (10µg/ml) coupled 4.5 micron polystyrene polybeads (Polysciences, Inc, 

Warrington, PA USA).   1x105 beads were added to 2x105 cells in u-bottom 96-

well plates, as previously described (362). Cells were collected at 72 hours and 5 

days, and CD28 surface expression was measured via flow cytometry on LSRII 

flow cytometer (BD Biosciences, San Jose, CA USA).  

Preparation of lenalidomide for in vitro studies.  Lenalidomide 

(Revlimid®) was provided by Celgene Corporation (Warren, NJ).  The drug was 

weighed and dissolved at the time of use in dimethyl sulfoxide (DMSO) and 

diluted 1:1000 in culture media to a final concentration of 10 μM (or indicated 

concentration) because storage of stock solutions at 20°C resulted in variable 

loss in activity.  An equal volume of DMSO was used as a vehicle control. 

T-cell Proliferation. Proliferation was determined after in vitro activation 

by bromodeoxyuridine (BrdU) incorporation (BrdU flow kit, BD Biosciences, San 

Diego, CA USA). 10μM of BrdU was added during the last 45 min of T-cell 

stimulation. BrdU pulsed T-cells were harvested and stained with anti-CD4-PE 

and anti-CD8-PE-Cy-5 (BD Pharmingen, San Jose, CA USA). The cells were 
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then fixed and permeabilized with BD Cytofix/Cytoperm buffer and incubated with 

DNase for 1 hour at 37ºC. Cells were stained with anti-BrdU-FITC antibody 

before flow cytometry analysis on an LSRII flow cytometer (BD Biosciences, San 

Jose, CA USA). The percentage of BrdU positive cells from each population was 

analyzed using Flow-Jo Software (TreeStar Inc, Ashland, OR USA.). 

Cell Sorting. T-cells were purified from healthy donor buffy coats as 

previously described, and were stained with 4',6-diamidino-2-phenylindole (DAPI) 

for viability, anti-CD8-APC-Cy7, CD4-PerCP-Cy5.5, and CD28-FITC antibodies 

(BD Pharmingen, San Jose, CA). Cells were then sorted into CD8+CD28+, 

CD8+CD28- populations via FACS Aria Cell Sorter (BD Pharmingen, San Jose, 

CA). 

siRNA Transfection and ELISA. For siRNA knockdown (KD), T-cells 

were transfected with siCD28 or control siRNA (Santa Cruz Biotechnology, Inc, 

Santa Cruz, CA USA) using Amaxa Nucleofection technology (Lonza, Basel, 

Switzerland). 10x106 purified T-cells were mixed with either control or 

CD28siRNA in 100μl Human T-cell nucleofection solution, nucleofected, and then 

placed in Lymphocye Media (Lonza Basel, Switzerland). Cells were rested 24 

hours before being stimulated with either plate bound anti-CD3, or anti-

CD3+CD28, antibodies in the presence or absence of lenalidomide. CD28 

surface expression was measured via flow cytometry at 48 and 72 hours after 

stimulation, at the same time supernatant was collected for ELISA analysis. 

Supernatant from stimulation experiments was frozen at -80ºC for analysis via 

Human IL-2 ELISA kit (eBioscience, San Diego, CA USA). 
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RT-qPCR. Total RNA was extracted from purified T-cells using the 

RNeasy Mini Kit (Qiagen, Chatsworth, CA USA).  Reverse transcription was 

performed using the iScript cDNA synthesis kit (Biorad, Inc. Hercules, CA USA) 

in accordance with the manufacturer’s suggestions. Relative target gene 

expression was measured by qRT-PCR using 18S rRNA expression as a 

reference gene. Expression levels of target mRNA and 18S rRNA were 

evaluated with Taqman Probes obtained from Applied Biosystems (Carlsbad, 

CA). All samples for both target genes (IL-2 or CD28) and 18S rRNA were 

measured in triplicate. Relative mRNA expression level for each sample was 

calculated using the ∆∆Ct method (363). 

Chromatin Immunoprecipitation (ChIP). Cells were isolated, fixed, 

lysed, and sonicated before chromatin-immunoprecipitation, as previously 

described (364). Briefly, after stimulation and drug treatment, primary T-cells 

were treated with 1% formaldehyde for 10min for cross-linking, followed by cell 

and nuclear lysis (50 mM Tris, pH 8.1, 10 mM EDTA, 1% SDS, 0.5 mM PMSF) 

and shearing. Chromatin was immunoprecipitated using 5µg anti-phospho-CREB 

antibody (Millipore, Temecula, CA USA) and protein A/G beads (Santa Cruz 

Biotechnology Inc., Santa Cruz, CA USA). Immunoprecipitated chromatin was 

collected and washed sequentially with TSE buffer (20mM Tris, pH 8.1, 50mM 

NaCl, 2mM EDTA, 0.1% SDS, 1.0% Triton X-100) and LiCl buffer (100mM Tris, 

pH 8.1, 50mM LiCl, 1% Nonidet P-40, 1% sodium deoxycholic acid, 1mM EDTA). 

DNA was then eluted from the beads with 50 mM NaHCO3 containing 1% SDS 
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and cross-linking reversed at 65°C overnight followed by proteinase K treatment. 

DNA was then purified via QIAquick PCR purification kit (Qiagen, Germantown, 

MD USA). For each sample, 4µl DNA was amplified and measured using Sybr 

Green (Bio-Rad, Inc., Hercules, CA USA). Primers used to amplify the pCREB 

binding site -180 upstream of the transcription start site were: forward: 5’-

AGAAGGCGTTAATTGCATGAATT-3’ and reverse: 5’-

TCCTCTTCTGATGACTCTTTGGA-3’.  

MDS Patient Samples. MDS patients (n=100) were consented at H. Lee 

Moffitt Cancer Center in Tampa, FL to participate in a peripheral blood collection 

protocol approved by the University of South Florida Institutional Review Board 

from 2004-2009. All patients signed University of South Florida Institutional 

Review Board approved informed consents for the collection of 40 ml of 

peripheral blood in heparin tubes. Samples were obtained from each patient at 

various times from 2004-2009 for immune monitoring studies and all cells were 

frozen in liquid nitrogen. Twenty-one of these patients had samples that were 

collected within 4 weeks prior to LEN treatment. LEN was administered at a dose 

of 10 mg for 21 out of a 28-day cycle for four cycles. All patients were evaluated 

for hematologic response after 16 weeks according to 2006 International Working 

Group Criteria (IWG). Hematologic response was reported previously within a 

larger cohort of MDS patients (338).  
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Analysis of T-cell naïve and memory populations. Naïve and memory 

CD4 and CD8 T-cell subtypes in MDS patients and healthy donors were detected 

after surface staining with anti-CD3-PE-Cy7, anti-CD8-PerCP-Cy5.5, anti-

CD45RA-FITC, anti-CD27-APC, anti-CD28-PE, and DAPI (all from BD 

Biosciences, San Jose, CA USA). Naïve and memory T-cell populations were 

distinguished by CD45RA and CD27 expression, as described previously by flow 

cytometry (319, 322, 323); briefly, the memory phenotype populations are 

characterized as naïve (CD45RA+/CD27+), central memory (CD45RA-/CD27+), 

effector memory (CD27-/CD45RA-), and terminal effector memory 

(CD45RA+/CD27-). Samples were run on an LSRII flow cytometer (BD 

Pharmingen) and populations were analyzed by FlowJo Software (Tree Star Inc., 

Ashland, OR USA).  
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CHAPTER 4 

Lenalidomide and the IMiDs inhibit the negative regulatory activity of 
protein phosphatase 2A in T-cells to mediate T-cell co-stimulation 

 
 

Introduction 

Thalidomide is a potent immunomodulatory drug (IMiD) with anti-

angiogenic and anti-TNF-α effects, as well as immune stimulating properties 

(222, 223). Although thalidomide was discovered to be a potentially important 

anti-cancer agent, severe side effects led to the development of the thalidomide 

analogues lenalidomide and pomalidomide, with greater immunomodulatory 

activity and less side effects such as peripheral neuropathy (227, 229). In 2005, 

lenalidomide was approved for the treatment of del(5q) myelodysplastic 

syndrome (MDS) because of its ability to induce karotype-specific transfusion 

independence and cytogenetic response (230). Isolated del(5q) MDS occurs in 

less than 15% of MDS cases where there is a 3 megabase (Mb) interstitial 

deletion on the long arm of chromosome 5 (5q31-5q32) coined the commonly 

deleted region (CDR) (365, 366). Patients with this specific chromosomal 

abnormality have a lower risk for leukemia transformation, improved survival, and 

a 75% complete response rate to lenalidomide treatment compared to other MDS 

patients without the deletion (230, 233). MDS is a clonotypic heterogeneous 

grouping of diseases characterized by ineffective hematopoiesis, multiple 
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cytopenias, dysplasia in the myeloid lineage, and a high risk for transformation to 

acute myeloid leukemia (AML).  

Although lenalidomide is able to induce high rates of transfusion 

independence in a subset of MDS patients without del(5q), the mechanism of 

action of the drug in inducing apoptosis of the del(5q) myeloid clone and 

improving hematopoiesis is still unclear due to the complexity of the disease. 

Ribosomal abnormalities have been implicated in the pathogenesis of MDS, 

namely a loss of RPS14 gene expression, located within the 5q-CDR. Deletion of 

this gene through an siRNA screen was shown to be sufficient to induce the 

del(5q)-associated pattern of impaired hematopoiesis and the del(5q) syndrome 

in mice(239, 240). RPS14 loss, or inhibition of ribosomal processing proteins 

leads to nucleolar stress, degradation of murine double minute protein 2 (MDM2) 

and increased p53 expression in the erythroid blasts, subsequently increasing 

the expression of p53 target genes (like p21) that prevent cell cycle progression 

and induce apoptosis (241, 242). Wei and colleagues have recently 

demonstrated that lenalidomide can promote p53 degradation within the erythroid 

blasts through inhibition of the auto-ubiquitination of MDM2, allowing MDM2 to 

ubiquitinate p53 and induce its degradation (243).  

Although these results suggest a mechanism for lenalidomide in 

promoting erythropoiesis, our group has shown that another set of genes within 

the CDR may be targeted by lenalidomide to induce myeloid apoptosis. Our 

group has shown that lenalidomide may inhibit the activity of the haplodeficient 

phosphatases cell division cycle 25c (Cdc25c) and protein phosphatase 2A 
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(PP2A) to prevent cell cycle progression and induce apoptosis within the myeloid 

clone (246). Reduction in phosphastase expression through siRNA in non-del(5q) 

MDS patient cell lines was sufficient to render them susceptible to lenalidomide-

induced apoptosis through direct and indirect mechanisms. PP2A is a 

heterotrimeric, ubiquitously expressed serine/threonine phosphatase involved in 

a myriad of cellular processes, including cell cycle regulation, signal transduction, 

cytoskeleton dynamics, and cell mobility (165, 166).  

Although lenalidomide may increase erythropoiesis and induce apoptosis 

within the del(5q) clone, the importance of immune activation against the myeloid 

clone has also been implicated in lenalidomide’s mechanism of action in MDS. 

Lenalidomide has previously been shown to have potent immune stimulatory 

activity, likely through activation of the T-cell co-stimulatory pathway (265). The 

activation of immune system seems to be important in MDS patient response to 

lenalidomide treatment, as patients who responded to lenalidomide have an 

increase in immune infiltrates into the bone marrow (230), and increased T-cell 

proliferation and cytokine production in vivo (307). The immunomodulatory 

activity is also implicated in multiple myeloma and chronic lymphocytic leukemia 

(253, 260). Interestingly, PP2Acα is a key negative regulator of the CD28 co-

stimulatory pathway in T-cells, reversing lck-induced phosphorylation of the 

cytoplasmic tail of the receptor (174). PP2A overexpression is implicated in 

decreased interleukin-2 (IL-2) production in systemic lupus erythematous (SLE) 

patients through increased de-phosphorylation of the pCREB transcription factor 

and carma-1 signaling molecule (171, 172). Lenalidomide has been shown to 
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increase phosphorylation of CD28 and secretion of IL-2 after anti-CD3 

stimulation alone (270), alluding to the inhibition of a negative regulator of T-cell 

signaling in the drugs immune modulatory mechanism. 

Therefore, we utilized multiple approaches to evaluate the interaction 

between PP2A and lenalidomide immune modulation.  Both functional studies 

and molecular modeling approaches were used to evaluate the molecular 

mechanism of lenalidomide-induced T-cell proliferation related to PP2A inhibition.  

 

Results 

PP2A activity in T-cell lines and primary T-cells is inhibited with 

lenalidomide treatment.  

PP2A is a negative regulator of IL-2 production through direct de-

phosphorylation of the CD28 receptor, as well as de-phosphorylating and 

therefore inactivating several downstream signaling factors including CREB and 

CARMA-1 (171, 172). Both lenalidomide and pomalidomide are able to increase 

IL-2 production from primary T-cells stimulated with anti-CD3 antibody alone, in 

the absence of anti-CD28, although lower amounts of IL-2 are induced by 

thalidomide even when higher doses are used (0.05µg/ml POM and LEN versus 

1.0 µg/ml THAL).  It was evident that all three drugs significantly increase IL-2 

production compared to DMSO vehicle-control treated cells (Figure 21 A).  
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Figure 21. Lenalidomide increases IL-2 production and inhibits 
phosphatase activity of PP2A isolated from Jurkat and primary T-cells. A. 
All three IMiDs induce IL-2 production from primary T-cells with increasing doses 
of anti-CD3 stimulation relative to DMSO control measured by ELISA. Data 
analyzed using 2-Way ANOVA: **=p<0.01, ***=p<0.001.  B-C. Measurement of 
endogenous PP2Ac activity from T-cells. PP2Ac was immunoprecipitated from 
cells treated with either DMSO (vehicle) or Len. Free phosphate released was 
then measured via phosphatase activity assay. Western blot in both A and B 
(upper panels) show equal pull-down of PP2Ac in each sample to ensure 
changes in activity were not due to unequal PP2Ac loading. IgG was used in 
each case as a negative control. A. PP2Ac catalytic activity was decreased in 
Jurkat cells treated with Len, p-value is indicated. B. PP2Ac activity from primary 
T-cells treated with len and stimulated in vitro with anti-CD3 antibody for 15 
minutes was decreased compared to DMSO control. ***=p<0.001. 
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Although we have previously shown that lenalidomide can inhibit PP2A 

activity, it is unclear whether this occurs in primary T-cells. To analyze this, 

Jurkat T-cells and primary T-cells isolated from a healthy donor were treated with 

lenalidomide, PP2Ac was immunoprecipitated and subjected to an in vitro 

phosphatase activity assay. Figure 21B shows that lenalidomide can inhibit 

PP2Ac activity in Jurkat cells. The same can also be seen in primary T-cells after 

stimulation with anti-CD3 antibody (Figure 21C). These data indicate that 

lenalidomide inhibits PP2A phosphatase activity in T-cells after anti-CD3 

activation, and this decrease in activity is associated with the release of IL-2. 

PP2A catalytic activity is inhibited after in vitro treatment with the 

IMiDs. Although it was previously shown that lenalidomide can induce apoptosis 

of the del(5q) clone when PP2Ac expression is reduced, the ability of 

lenalidomide to inhibit PP2A catalytic activity was not established. To first 

determine if lenalidomide inhibits the catalytic activity of PP2A, ad293 cells were 

stably transfected with HA-tagged PP2Ac and treated with lenalidomide. After 

lenalidomide treatment, PP2Ac was immunoprecipitated and subjected to in vitro 

phosphatase enzymatic activity assay. As shown in Figure 22A, treatment with 

increasing concentrations of lenalidomide resulted in a dose-dependent decrease 

in PP2Ac enzymatic activity compared to DMSO vehicle control.  Western blot 

analysis was performed to ensure equal HA-PP2Ac protein was present in each 

sample. 
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Since lenalidomide is able to inhibit PP2A enzymatic activity in vitro, we 

next determined whether other IMiDs display similar inhibitory function. Figure 

22B-D shows that all three of the IMiDs, to varying degrees, inhibit PP2Ac 

phosphatase activity in a dose-dependent manner, with thalidomide being the 

least potent (Figure 22D). Figure 22E compares the percent activity of the PP2A 

enzyme in the presence of 10µM of the IMiDs, demonstrating that lenalidomide 

and pomalidomide are more potent inhibitors than thalidomide. This is consistent 

with the relative immunomodulatory effects of thalidomide and the various 

derivatives.  
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Figure 22. PP2A catalytic activity is inhibited after in vitro treatment with all 
of the IMiDs. A. For phosphatase activity assay, human embryonic kidney (HEK) 
cell line was stably transfected with Hemagluttinin (HA)-tagged PP2Acα. HA-
PP2Ac was immunoprecipitated from ad293 cellular extracts treated with vehicle 
(DMSO) or 5-10µM lenalidomide (Len). Upper panel western blot shows equal 
pull-down of HA-PP2Ac in HA-transfected cells, and no pull-down in empty vector 
transfected (EV) and IgG pull-down negative controls. Graph represents dose-
dependent decrease in free-phosphate released through PP2A activity with 
increasing doses of lenalidomide treatment. B-E. HA-PP2Acα expressing-HEK 
cells were treated with varying doses of IMiDs before HA-PP2A was then 
immunoprecipitated (IP), incubated with phospho-threonine peptide and 
phosphatase activity measured by Malachite green assay. Dose dependent 
inhibition of PP2Ac activity can be seen with lenalidomide (B) and pomalidomide 
(C). Inhibition of PP2A activity is seen at highest thalidomide dose (D). E. Graph 
represents inhibition of PP2A activity at 10μM dose of all three IMiDs. T-test: *= p 
0.0002 **= p<0.0001.  
 

 Virtual computer modeling reveals a potential direct interaction of 

the IMiDs within the active site of the PP2A catalytic subunit. Recently, 

cereblon (CRBN) was shown to directly interact with IMiDs and to suppress its 

auto-E3-ubiquitination function.  This is the only molecule known to directly 

interact with IMiDs. Next, we used a molecular computer modeling approach to 

estimate the potential for lenalidomide and the other IMiDs to directly bind to 

PP2A. Four compounds were prepared for docking to PDB 3K7V: lenalidomide, 

pomalidomide, thalidomide, and a known potent PP2Ac inhibitor, fostriecin. Each 

of these compounds possesses chiral carbons, therefore alternative 

stereoisomers were included in the docking. All of the IMiDs are administered as 

a racemic mixture, and cannot be administered in isolation as they can freely 

transform in vivo (219). Both the R and S forms of lenalidomide place the 

nitrogen bearing six-membered ring into the hydrophobic region of the binding 

site, and bind with similar estimated free energies of -6.52 and -5.80, 
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respectively. The R and S forms of pomalidomide actually dock significantly 

differently from one another, but have nearly identical docking energies (-6.39 

and -6.06). The R and S forms of thalidomide binds similarly to thalidomide and 

lenalidomide , although the chirality causes significant differences in estimated 

binding free energy. The S enantiomer dockings of the IMiDs are shown in 

Figure 23A-C. As you can see, lenalidomide (Figure 23A) and pomalidomide 

(Figure 23B) form 2 hydrogen bonds within the catalytic pocket of the c-subunit; 

lenalidomide creates a hydrogen bond to W200 and R214 and pomalidomide to 

R214 and S120. The S binding pose of thalidomide on the other hand, only forms 

one hydrogen bond within the pocket, at W200, (Figure 23C) suggesting that the 

racemic mixture of the R and S forms of thalidomide would have significantly 

reduced binding capacity compared to the racemic mixtures of len and pom. 

Fostriecin is a significantly more potent and specific inhibitor of PP2A enzymatic 

activity and is effective in the nanomolar concentrations (367). The binding free 

energy for fostriecin was -9.17 kcal/mol and it was capable of making three 

hydrogen bonds, supporting the validity of the docking experiments. Further 

validation of the docking site can be seen through published co-crystallization of 

another PP2Ac inhibitor, okadaic acid, within the catalytic pocket of PP2A. 

Okadaic acid also shares all three potential interaction sites, H191, W200, and 

R214, within the PP2A active site (368). These data support the in vitro data that 

thalidomide is the weakest inhibitor of PP2A enzymatic activity, and suggest a 

potential direct inhibition of PP2A enzymatic activity in T-cells. 
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Figure 23. Virtual modeling of the IMiDs reveals potential interacting sites 
within the catalytic pocket of the PP2Ac subunit. Free energies of binding 
and poses for the molecules suggest that both the R and S enantiomers of all 
three immunomodulatory drugs bind to the same position within the catalytic 
pocket of the c subunit of the PP2A heterodimer, and thereby possibly inhibit 
phosphatase activity (A-C). The S enantiomers of both lenalidomide (A) and 
pomalidomide (B) have better binding poses and energies (-5.80 kcal/mol and -
6.06 kcal/mol respectively) than thalidomide (C) (-5.34kcal/mol). S enantiomers 
of IMiDs Lenalidomide (A), Pomalidomide (B), and Thalidomide (C), are shown 
bound within the catalytic pocket of PP2Acα. Dashed lines indicate hydrogen 
bonds between the small molecule inhibitors and amino acid residues W200 and 
R214. Another hydrophobic interaction is shown to occur at H191. Black oval (C) 
indicates position where thalidomide lacks second hydrogen bond compared to 
the other compounds, owing to the lack of aromatic amine group seen in A. 
 

Mutations in the lenalidomide-binding sites of the PP2A catalytic 

subunit render PP2A enzymatically inactive. Since virtual modeling predicted 

potential binding sites for lenaliodmide within the catalytic pocket of PP2A, it is 

possible that lenalidomide could directly bind to the active site and inhibit PP2A 

enzymatic activity. To confirm this prediction, we utilized site-directed 

mutagenesis of the estimated interaction sites that may be required for 

lenalidomide-mediated PP2A inhibition. According to the virtual modeling 

predictions, aaW200 and aaR214 may be important binding sites for 

lenalidomide within the PP2A catalytic pocket, forming a hydrogen bond with the 

lenalidomide S molecule. H191 was also implicated in lenalidomide binding 
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through formation of a hydrophobic interaction with the six-membered ring. 

These three amino acids in PP2Ac were mutated using site-directed 

mutagenesis and overexpressed in ad293 cells.  As shown in Figure 2, a similar 

immunoprecipitation approach was used to selectively evaluate the function of 

the mutant proteins using immunoprecipitation with anti-HA antibody (IP anti-HA-

PP2Ac).  Stable cell lines of the HA-WT (wild-type) and HA-PP2Ac mutant 

proteins were established. Figure 24A shows the phosphatase activity and 

cellular expression of the different clones. WT-HA PP2A was used as the positive 

control (100% activity). Clones expressing W200F-D, R214A, and H191G did not 

retain HA-plasmid expression after selection, and therefore could not be utilized. 

Three independent W200F (A-C) and R214A (B-D) clones expressed mutated 

HA-PP2Ac protein but had no enzymatic activity, indicating that mutation of these 

amino acids renders PP2A catalytically inactive revealing novel amino acids 

within PP2A critical for function.  Due to the importance of these amino acids in 

PP2A function, these mutant constructs were not useful to evaluate the effects of 

lenalidomide.  

The only mutated clone retaining PP2A enzymatic activity was H191G-B, 

which was then utilized in lenalidomide experiments. Lenalidomide as well as an 

independent PP2A inhibitor (okadiac acid, OA) retained their suppressive 

function in the presence of the mutation (Figure 24B; p<0.001). Therefore, these 

mutant PP2A proteins cannot conclusively determine whether the direct 

interaction between lenalidomide and PP2A is important for the suppressive 
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response, although we have identified novel amino acids involved in the catalytic 

function of PP2A.   

 

Figure 24. Mutations of theorized IMiD-interacting sites alters PP2A 
enzymatic activity. Virtual modeling suggested three potential amino acids 
within the catalytic pocket of PP2A to interact with lenalidomide. Mutations in 
these sites (W200F, R214A, and H191G) were created and the effect on the 
enzymatic activity of PP2A (A) and of lenalidomide’s ability to alter PP2Ac 
enzymatic activity (B) were analyzed. A. WT-PP2Ac and mutants were 
immunoprecipitated from ad293 cells using anti-HA tag antibody and subjected to 
phosphatase activity assay. Red box highlights clones with no catalytic activity. 
One clone, H191G-B did retain enzymatic activity. Western blot (upper panel) of 
HA-PP2Ac expression used as positive indicator of mutant protein expression. B. 
H191G-B retained enzymatic activity, and was subjected to lenalidomide 
treatment and subsequent phosphatase activity assay. Mutation of histidine 191 
to glutamate did not alter lenalidomide’s ability to inhibit PP2Ac activity analyzed 
by 2-way ANOVA. **=p<0.01, ***=p<0.001. 
 

Discussion 

 Lenalidomide and the other IMiDs are known to augment the proliferation 

and function of T-cells and NK cells by a mechanism that involves CD28 

signaling and possibly involves suppression of CRBN. Previous work has shown 

that lenalidomide specificity for apoptosis induction in MDS del(5q) is mediated 

by haploinsufficiency of PP2Ac and Cdc25c.  Reduction in these two 
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phosphatases alone are sufficient to render resistant myeloid clones susceptible 

to lenalidomide-induced apoptosis as shown by shRNA knockdown of these 

molecules in non-del(5q) hematopoietic progenitors and cell lines(246). Although 

these proteins are important cell cycle regulators, PP2Ac is essential to many 

cellular processes, including negative regulation of CD28 co-stimulatory signaling 

in activated T-cells. Previous studies in our lab have shown that lenalidomide 

treatment increases pCREB binding to the IL-2 promoter (307).   PP2A can 

directly de-phosphorylate Carma-1, subsequently dissociating it from the CBM 

complex (172). Therefore, it is plausible that lenalidomide may stimulate IL-2 by 

inhibiting this negative regulator of T-cell signaling.  Since CD28 stimulation is 

needed for de-phosphorylation of Carma-1, activation of this pathway may be 

mediated directly by lenalidomide leading to increased and prolonged signaling 

for proliferation and cytokine secretion in the absence of CD28 co-stimulatory 

ligation. 

 We have demonstrated through in vitro phosphatase activity assays that 

lenalidomide and the other IMiDs, to varying degrees, can inhibit PP2Ac 

enzymatic activity (Figures 21-23). Based on previous experiments, lenalidomide 

has no direct inhibition of PP2Ac phosphatase activity. There are several 

plausible explanations, namely lack of proper PP2Ac subunit folding in 

baculovirus-generated protein, or improper PP2Ac holoenzyme subunit 

formation. It is difficult to generate properly-folded recombinant PP2Ac protein, 

as the catalytic subunit generated in bacteria is non-functional. Therefore, it is 

plausible that commercially available recombinant PP2A protein is altered in 
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confirmation compared to in vivo-expressed protein, and therefore lenalidomide 

cannot bind. Another plausible explanation is that the recombinant protein comes 

as an A-B-C heterotrimer with a fixed beta subunit. PP2Ac is a heterotrimeric 

enzyme composed of a scaffolding subunit (A α or β) , a catalytic subunit (Cα or 

β) and one of 16 different B-regulatory subunits (B, B’, B’’, or B’’’ family) with 

variable expression based on cell and tissue type (165, 166, 369). The A-C core 

enzyme has been purified from many different tissues, but its presence in vivo is 

slightly controversial and specific substrates of the dimer alone have not been 

identified (370). Since PP2A is ubiquitously expressed and involved in a myriad 

of cellular processes, that A-C heterodimer binds to the multiple different B-

regulatory subunits that confer substrate specificity and prevent random de-

phosphorylation activity of the PP2A enzyme (167, 371-373). The B subunit 

expressed with the PP2Ac heterotrimer in recombinant protein may not allow for 

proper lenalidomide binding to allow inhibition of enzymatic activity. Proteomics 

analysis of immunoprecipitated protein from lenalidomide treated lysates was 

unable to identify a particular ratio of B subunits distinct to lenalidomide-binding 

(data not shown).  

Therefore, a molecular modeling approach was used to theoretically 

indicate the potential for lenalidomide direct binding interactions with PP2A, and 

found that all three of the IMiDs can potentially bind within the catalytic active site 

of the PP2A catalytic subunit in both the R and S enantiomeric forms (Figure 

23). It was important to include both of the racemates in the virtual analysis, as it 

has been previously postulated that different forms of thalidomide (and 
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subsequently lenalidomide) have different in vivo activities (218, 219). Also, 

stereochemistry in virtual screening has been previously determined to 

significantly affect free binding energies (374). Interestingly, the lenalidomide 

racemates bound with similar docking poses and binding energies, while the 

thalidomide R and S enantiomers had dramatically different docking poses, with 

the S form of thalidomide losing a hydrogen bond within the pocket, reducing its 

binding energy. These results, combined with the expected higher binding energy 

of the known specific and potent PP2A inhibitor, forstriecin, indicate that it is 

possible for the IMiDs to directly bind to the PP2A active site to inhibit 

phosphatase activity.  

To validate these predictions, mutation in the predicted interacting 

residues were made by site-directed mutagenesis, stably over-expressed, and 

tested for phosphatase activity. Mutation of only one of the potential interacting 

residues produced a functional protein.  The other mutants either induced 

apoptosis or rendered the enzyme catalytically dead.  Although this virtual 

modeling revealed novel amino acids with importance for PP2A catalytic function, 

the mutant proteins were unable to yield information about the nature of 

lenalidomide function. The only mutation to retain activity was H191G, which was 

predicted to generate only Van der Waals interaction with the lenalidomide 

compound, and mutation of this site failed to disrupt lenalidomide, OA, or 

fostriecin function.   

Suppression of PP2A with lenalidomide in T-cells was evident only after 

anti-CD3 activation which is more consistent with an indirect mechanism of 
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suppression. Although proof of direct inhibition of PP2A phosphatase activity was 

not established, either direct or indirect inhibition of PP2A by lenalidomide and 

the other IMiDs is important for establishing the molecular mechanism of action 

of IMiDs in T-cells. Several other proteins such as E3 ubiquitin ligases murine 

double minute 2 (MDM2) and CRBN have recently been implicated as direct 

lenalidomide targets in MDS erythroblasts and multiple myeloma (243, 256, 257).  

The role of CRBN in T-cell proliferation and activation is unclear. Knockdown of 

CRBN expression in T-cells was shown to abrogate lenalidomide’s cytokine-

promoting activity, leading to the idea that CRBN expression is essential for 

lenalidomide’s mechanism of action (257) but functional studies of CRBN in T-

cells are lacking. Currently, the only E3 ubiquitin ligase known to regulate the 

response of CD28 is Cbl-b. More studies are necessary to confirm the role CRBN 

in PP2A function, Cbl-b, and CD28 signaling during T-cell activation.  

 

Materials and Methods 

Cell culture and creation of stably transfected cell lines. Ad293 cells 

were cultured in RPMI 1640 media (Gibco, Life Technologies, Grand Island, NY, 

USA) supplemented with 10% heat-inactivated FBS without antibiotic. Cells were 

transferred to 6-well plates at concentration of 0.8x106 cells/well in 2ml media. 

The next day, each well was transfected with 4μg plasmid DNA pcDNA3 vector 

containing HA-PP2Acα, or empty vector, using Lipofectamine 2000 (Invitrogen, 

Grand Island, NY USA) according to the manufacturer’s protocol for adherent 
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cells. 48 hours later, stably transfected cells were selected for using media 

supplemented with 1.0mg/ml G418 Sulfate (Cellgro, Manassas, VA USA). Cells 

were then diluted to 1 cell/well in a 96-well plate to isolate single clones 

expressing either HA-PP2Acα or empty vector. Stable expression of the HA 

transgenic protein was determined via western blot with anti-HA antibody 

(Sigma-Aldrich, St. Louis, MO USA), with empty vector serving as a negative 

control. Stable clones of HA-PP2Acα and EV were grown in RPMI 1640 

supplemented with 10% FBS and 0.5mg/ml G418 in all further experiments.   

Drug Treatment and Cell lysate preparation. Stably transfected ad-293 

HA-PP2Ac and empty vector cells were treated with varying concentrations of 

lenalidomide, pomalidomide, and thalidomide dissolved in DMSO. Cells were 

grown at 0.8x106/ml overnight in 35mm culture dishes before drug addition, or 

equivalent volume of DMSO for 5’ at 37ºC before collection.  

Cells were then washed with 1x TBS on ice and lysed in 150μl lysis buffer 

composed of 10mM Tris (pH 8), 50mM NaCl, 5mM EDTA, 1% Nonidet P-40, 1 

μg/μl protease inhibitors leupeptin, aprotinin, and antipain, 1mM sodium 

orthovanadate, 5mM NaF, and 1mM DTT for 30’ at 4ºC. Cellular extracts used in 

phosphatase activity assay was prepared using the lysis buffer adjusted to pH 

7.0, omitting ser/thr phosphatase inhibitor NaF (171). Protein concentration was 

measured using Bradford reagent (Bio-Rad) and standardized with BSA. Cellular 

lysates for Western Blot were stored at -80ºC, while lysates for phosphatase 

assay were used immediately. 
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Phosphatase activity assay. Enzymatic activity of PP2Acα was 

determined following immunoprecipitation using a malachite green phosphatase 

assay (Ser/Thr Phosphatase Assay Kit 1; Upstate) and methods adapted from 

Katsiari et al. (171) as follows. 250ug whole cellular protein was incubated with 

anti-HA sepharose beads (Sigma-Aldrich) to pull down HA-PP2Acα, or a 

negative control mouse IgG antibody and Protein A/G agarose beads (Santa 

Cruz Biotechnology), at 4ºC rocking for 2 hours. Beads were then washed 3 

times in 700µl TBS, and one time in 500µl Ser/Thr Assay Buffer before finally 

dissolved in 40ul Ser/Thr Assay Buffer. Samples were then incubated with 

500µM of PP2Acα phosphor-peptide substrate (amino acid sequence: K-R-pT-I-

R-R) for 10 minutes at 30ºC constantly shaking. Supernatants (25µl) were then 

added to a 96-well plate in triplicate and 100µl malachite green added to 

measure free-phosphate in solution. Color was allowed to develop for 15 minutes 

before read at 650nm on spectrophotometer. Phosphate concentrations 

determined using the equation from a standard curve.  

 After incubation with p-peptide, beads were then re-suspended in lysis 

buffer, boiled, and immunoprecipitated protein ran on an SDS-page gel (10%) to 

ensure equal pull-down of PP2Ac amongst samples. 
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T-cell isolation and stimulation. Peripheral blood from buffy coats of 

healthy donors was obtained from the Southwest Florida Blood Services, St. 

Petersburg, FL for purification of primary T-cells. T-cells were isolated using 

RosetteSep® Human CD3+ T-cell Enrichment Cocktail (StemCell Technologies, 

Vancouver, BC Canada) according to the manufacturer’s protocol. Primary T-

cells, or Jurkat T-cell leukemia cell line, were treated with 10µM Len or DMSO 

(vehicle control) for 1 day prior to stimulation. T-cells were then counted and 

coated with anti-CD3 antibody (5µg/ml) (BD Biosciences, San Jose, CA USA) on 

ice for 1 hour (10x106/sample group) before being washed and coated with anti-

mouse Fc antibody (5.0µg/ml) (Thermo Scientific, Rockford, IL USA) on ice for 30 

minutes. Cells were again washed and the TCR cross-linked through incubation 

at 37oC for 15 minutes before lysis in PP2A lysis buffer described above. 

Subsequent phosphatase assay and western blotting were performed as 

previously described. 

Virtual Modeling. Virtual chemical modeling of the three different IMiDs 

(thalidomide, lenalidomide, and pomalidomide) and a known positive control, 

fostriecin, was performed utilizing the PP2A crystal structure PDB 3K7V (2Å 

resolution). Prior to simulations and analysis, PDB 3K7V was prepared using the 

Schrödinger application Protein Prep (Schrödinger, L.L.C. Cambridge, MA USA) 

to remove waters, correct histidine orientations and hydrogen bonds, and provide 

“soft” energy minimization to relax protein structure. Protein structure was then 

analyzed via the SiteMap application (Schrödinger, L.L.C. Cambridge, MA USA) 

to identify potential binding sites, serving as a predictor to determine if the known 
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binding site for small molecules could be located, which found the catalytic 

pocket used for docking purposes.  

The four compounds, lenalidomide, pomalidomide, thalidomide, and 

fostriecin were prepared for docking using the LigPrep application (Schrödinger, 

L.L.C. Cambridge, MA USA), creating a 3-dimensional geometry for the 

structures and providing for alternative tautomers and ionization states (between 

pH 5.0 and 9.0), alternative ring conformations, and diastereomers. Application 

GLIDE (Schrödinger, L.L.C. Cambridge, MA USA) was used to estimate the free 

energy of binding for fostriecin, thalidomide, lenalidomide and pomalidomide to 

the PP2Acα heterodimer. Fostriecin is a known PP2Acα inhibitor (367) and was 

used as a positive control in this experiment.  

Site-directed mutagenesis. Site-directed mutagenesis of the HA-PP2Ac 

plasmid performed using the QuikChange Site-Directed mutagenesis kit from 

Agilent Technologies (Santa Clara, CA USA) per the manufacturer’s instructions. 

Briefly, the pcDNA3 plasmid containing the HA-PP2Ac wild-type gene was 

denatured and primers containing the codon for the desired mutation for PP2Ac 

was annealed. Using PfuTurbo DNA polymerase, the mutagenic primers were 

incorporated into the plasmid, resulting in nicked circular strands. The circular 

dsDNA including the new mutation was then transformed into competent cells, 

colonies were selected, grown up, and isolated using plasmid mini-prep kit 

(Invitrogen, Carlsbad, CA USA). Plasmids were sequenced by the Moffitt Cancer 

Center Molecular Biology core facility to ensure expression of the mutation. The 

mutated plasmid DNA was then transfected into ad293 cells and stable clones 



www.manaraa.com

114 

were isolated as previously described. Successful plasmid expression in the 

clones was measured through HA-tag expression via western blot. Evaluation of 

mutated PP2Ac functional activity was performed using phosphatase activity 

assays as previously described. Primers for generating the various PP2Ac 

mutants were: W200F: forward: 5’-

GAGGGTCCAATGTGTGACTTGCTGTTCTCAGATCCAGATG-3’, reverse: 5’-

CATCTG GATCTGAGAACAGCAAGTCACACATTGGACCCTC-3’; R214A: 

forward: 5’-GTGGTTGG GGTATATCTCCTGCAGGAGCTGGTTAC-3’, reverse: 

3’-GTAACCAGCTCCTGCAGGAGA TATACCCCAACCAC-3’; H191G: forward: 

5’-GCCTACAAGAAGTTCC CGGTGAGGGTCCAATGTGTG-3’   reverse: 5’-

CACACATTGGACCCTCACCGGGAACTT CTTGTAGGC-3’    
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CHAPTER 5 

Discussion 

 Therapeutic implications of thalidomide and the IMiDs have progressed 

significantly since the thalidomide tragedy of the 1960s. From use as a sedative, 

to anti-angiogenic and anti-cancer properties, to immune modulating 

mechanisms, there is great potential for lenalidomide and pomalidomide to be 

used in a variety of diseases and malignancies.  The use of lenalidomide in 

del(5q) MDS revolutionized treatment of the disease and gave patients with few 

options other than repeated transfusions and a bone marrow transplantation a 

chance at long-term survival. Unlike most therapeutics that are designed to target 

a particular pathway or molecule, approval of lenalidomide was accepted based 

upon patient outcome without a complete understanding of the mechanism of 

action.  Once clinical usage of the IMiDs became more widespread, research into 

the direct mode of action of the drugs in MDS and other malignancies escalated, 

and is still a topic of intense investigation today. 

 Lenalidomide is a small molecule therapeutic with a multitude of actions in 

several different diseases and cell types, contributing to the complexity and 

difficulty in determining the exact molecular target. Lenalidomide is able to induce 

apoptosis in MM and MDS dysplastic clones, as well as improve hematopoiesis 

through preventing apoptosis within erythroid blasts. Lenalidomide and the IMiDs 

also have strong immunomodulating capacity, where they can increase the 
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proliferation, activation, and cytokine production in T-cells and proliferation and 

ADCC in NK-cells. It is important for us to understand how lenalidomide has such 

powerful immune-harnessing potential, as knowledge of therapeutic mechanisms 

for immunomodulation could be used to create even better drugs with less side 

effects or threat of teratogenicity to offspring. This information would also be 

useful in determining whether lenalidomide would be a powerful immunotherapy 

adjuvant in different tumor settings/combination therapies.  

 For these reasons, we set out to determine how lenalidomide functions in 

augmenting T-cell proliferation and function in normal T-cells, and if improved 

immune function in patients with MDS due to lenalidomide contributes to their 

hematologic response. We were first able to discover that T-cells from MDS 

patients are inherently hypo-responsive to stimulation, and that lenalidomide can 

reverse this defect. Len can augment the Th-1 cytokine producing and 

proliferation capacity both in vitro and in vivo in MDS patient T-cells. We also 

discovered that an increase in immune activity through cytokine production, 

proliferation, and naïve T-cell production actually correlated with hematologic 

response in non-del(5q) patients (Chapter 2). These results are extremely 

important in recognizing the importance of an active and responding immune 

system in helping to eradicate the myeloid clone in MDS. This also raises the 

question of predictability of whether or not non-del(5q) patients will respond to 

lenalidomide therapy, as only 25% of them actually do? Ebert et al. described an 

erythroid gene signature that could help predict whether or not non-del(5q) 
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patients would respond to lenalidomide therapy, although the signature involves 

a costly microarray only presently utilized by their institution (238). 

 We then determined that the phenotype of the T-cell compartment in MDS 

patients prior to treatment with lenalidomide could potentially predict whether or 

not patients would respond to the drug. We found that patients who had high 

levels of Terminal Effector Memory T-cells, which are inherently CD28null, were 

erythroid non-responders after lenalidomide treatment. We examined this further 

and determined that not only the percentage of TTEM cells could potentially 

predict non-responsiveness, but also an overall decrease in CD28+ cells in the T-

cell compartment, whether CD8+ or CD4+ (Chapter 3). A group in Australia has 

recently measured CD28 expression on MDS patient samples treated with 

lenalidomide at their institution, and we are currently collaborating to validate this 

predictive model. If true, testing for CD28 expression by flow cytometry in the 

peripheral blood of MDS patients prior to any therapy may help determine 

whether or not non-del(5q) patients should receive lenalidomide therapy, as they 

are less likely to respond to the drug the higher their CD28-%. 

 These results are not only important for influencing therapeutic decisions, 

but they point directly to a mode of action of lenalidomide in T-cells. Since 

aberrant accumulation of hypo-responsive CD28- T-cells may predict 

lenalidomide responsiveness, one can hypothesize that CD28 is important for 

lenalidomide mechanism of action in T-cells. Lenalidomide is known to possess 

the ability to induce proliferation of T-cells in the absence of co-stimulation or 

external ligation of the CD28 receptor, alluding to the importance of CD28 in 
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lenalidomide mechanism of action. We have shown that although lenalidomide 

can induce proliferation and function of T-cells in the absence of external 

receptor ligation, the presence of the CD28 receptor with its internal ITAM motifs 

is essential for lenalidomide action. Lack of the CD28 receptor, either in naturally 

occurring CD28- T-cells, or through in vitro shRNA knockdown, renders 

lenalidomide incapable of inducing a proliferative or cytokine response. It is 

therefore likely that receptor expression is necessary to act as a scaffold for 

CD28 downstream signaling molecules that lead to increased IL-2 expression 

and proliferation. Increased pCREB binding to the CD28-Response Element on 

the IL-2 promoter further supports this hypothesis (Chapter 3).  

 Although we have discovered that CD28 expression is necessary for len 

action, and that len likely acts through inhibition of a negative regulatory signal, 

the direct molecular target remains elusive. There are several potential 

molecules that could be targeted by lenalidomide, including phosphatases and 

E3-ubiquitin ligases. Thalidomide was shown to target the E3 ubiquitin ligase 

Cereblon in chicken and zebrafish embryos to cause teratogenesis (248). 

Although this group was able to prove direct binding of thalidomide to cereblon, 

therefore blocking the ability of the CRBN-Cul4-DDB1 E3-ligase complex to 

function, it is unclear whether this occurs in T-cells as well. Cereblon was first 

discovered in the brain to be involved in memory and learning, and there is 

actually no known function in T-cells. Interestingly, Lopez-Girona et al. have 

determined that CRBN expression in T-cells is essential for lenalidomide-induced 

IL-2 and TNF-α production (257). Preliminary results, however, from T-cells 
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isolated from cereblon knockout mice show an increase in IL-2 production in the 

presence of anti-CD3 stimulation, indicating that cereblon may play a role in 

negative regulation of IL-2 production (data not shown). Germline deletion of 

cereblon in mice has no detrimental effect on limb generation, lymphocyte 

populations, or overall T-cell phenotype/function. Therefore, it is unclear what 

role cereblon plays in T-cell function or what particular targets in the T-cell 

signaling pathway cereblon could bind to, and are topics of further investigation 

in our lab. 

 Another E3 ubiquitin ligase that plays a major role in T-cell anergy 

induction and preventing non-specific T-cell activation through ubiquitination of 

downstream CD28 targets is cbl-b. Although direct inhibition of cbl-b by 

lenalidomide was not identified (data not shown), T-cells isolated from cbl-b 

knockout mice are hyper-responsive to anti-CD3 stimulation through their ability 

to proliferate/function without anti-CD28 ligation (155, 156). The IL-2 production 

from these mouse T-cells stimulated with anti-CD3 antibody alone is nearly 

identical to cells treated with lenalidomide in the presence of anti-CD3 

stimulation, indicating a potential link. Since there is solid evidence lenalidomide 

inhibits multiple E3 ubiquitin ligases (cereblon and MDM2) in a variety of cell 

types (multiple myeloma cells, erythroid cells, etc), other potential E3 ligases as 

targets are completely plausible. 

  Another known target of lenalidomide in apoptotic induction within the 

del(5q) myeloid clone is protein phosphatase 2A. Since PP2A is involved in a 

variety of cellular processes with varying roles, we have demonstrated that 
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lenalidomide not only inhibits PP2A activity within MDS to prohibit cell cycle 

progression, but in primary T-cells as well. PP2A is another negative regulator of 

CD28 signaling and over-expression has been implicated in the reduction of IL-2 

secreting capacity in T-cells from SLE patients (170, 171). PP2A can directly bind 

to and de-phosphorylate the CD28 receptor, and inhibition through lenalidomide 

increases ITAM phosphorylation and prolongs downstream signaling. These data 

suggest multiple protein targets for lenalidomide not only in various cell types, but 

within T-cells as well, likely to share a negative regulatory role within the CD28 

pathway. 

 Taken together, the data presented in this dissertation have several 

implications within cancer immunotherapy and MDS. Lenalidomide is likely to be 

a potent immunotherapy adjuvant, through its ability to augment T-cell 

proliferation and function in the absence of co-stimulatory signals that are often 

down-regulated on solid and liquid tumors. Lenalidomide has already been 

investigated and is used in several clinical trials in combination with cellular 

vaccines, but theoretically could also be used in combination with antibody 

therapies such as ipilimumab and anti-PD1 therapy that target the co-inhibitory 

pathway. Prevention of co-inhibitory signals while simultaneously activating co-

stimulation could counteract problems of T-cell tolerance and non-

responsiveness in cancer, and result in a robust antigen-specific cytotoxic T-cell 

response, while providing additional help through NK-cell mediated ADCC and 

killing.  
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 Importantly, CD28 expression on primary T-cells from cancer patients 

could be used to identify those patients that would actually respond to the 

immunomodulating therapy. As described previously, CD28 expression is lost on 

CD8+ cytotoxic T-cells through the aging process. The greatest risk factor for 

cancer is age, and since the median age of onset of MDS is 76 and most cancers 

arise in the elderly, measuring the expression of CD28 inherent on the T-cell 

population would be advantageous to predict responses to lenalidomide therapy. 

Through our experiments we have determined the likely pathway for 

lenalidomide’s mechanism of action, and a potential target that could be utilized 

by even other therapies to garner increases in T-cell function.   
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